Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
- a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6 <=>-m-2-m+6=3 <=>-2m=-1 <=>m=1/2.
xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé
\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)
\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)
\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)
Ta có : a - b + c = 1 + 6 - 7 = 0
vậy pt có nghiệm x = -1 ; x = 7
a) vì A(-1; 3) thuộc (d) nên:
3 = 2.(-1) - a + 1
<=> 3 = -2 - a + 1
<=> a = 4
b) Lập phương trình hoành độ giao điểm:
\(2x-a+1=\frac{1}{2}x^2\)
\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)
ta có: \(y_1=\frac{1}{2}x_1^2\)
\(y_2=\frac{1}{2}x_2^2\)
\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)
\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)
\(\Leftrightarrow10a-a^2+87=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
Phương trình hoành độ giao điểm: \(x^2-\left(2m-1\right)x+m-2=0\)
\(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=\left(2m-2\right)^2+5>0;\forall m\)
\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt
\(x_1y_1+x_2y_2=0\)
\(\Leftrightarrow x_1.x_1^2+x_2.x_2^2=0\) (do \(y_1=x_1^2;y_2=x_2^2\))
\(\Leftrightarrow x_1^3+x_2^3=0\)
\(\Leftrightarrow x_1^3=-x_2^3\Leftrightarrow x_1=-x_2\)
\(\Leftrightarrow x_1+x_2=0\)
Mà \(x_1+x_2=2m-1\Rightarrow2m-1=0\Rightarrow m=\frac{1}{2}\)
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=2x-m+1\)
=>\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Delta=\left(-2\right)^2-4\cdot\dfrac{1}{2}\left(m-1\right)\)
\(=4-2\left(m-1\right)=4-2m+2=-2m+6\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
=>-2m+6>0
=>-2m>-6
=>m<3
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2}{\dfrac{1}{2}}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{\dfrac{1}{2}}=2\left(m-1\right)\end{matrix}\right.\)
\(x_1x_2\left(y_1+y_2\right)+48=0\)
=>\(\dfrac{1}{2}\left(x_1^2+x_2^2\right)\cdot x_1x_2+48=0\)
=>\(\dfrac{1}{2}\cdot2\cdot\left(m-1\right)\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
=>\(\left(m-1\right)\cdot\left[4^2-2\cdot2\left(m-1\right)\right]+48=0\)
=>\(\left(m-1\right)\left(16-4m+4\right)+48=0\)
=>\(\left(m-1\right)\left(-4m+20\right)+48=0\)
=>\(\left(m-1\right)\left(-m+5\right)+12=0\)
=>\(-m^2+5m+m-5+12=0\)
=>\(-m^2+6m+7=0\)
=>\(m^2-6m-7=0\)
=>(m-7)(m+1)=0
=>\(\left[{}\begin{matrix}m=7\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
a) m=0 => (d): y=-x+2
phương trình hoành độ giao điểm của (P) và (d):
\(x^2=-x+2\Leftrightarrow x^2+x-2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)
b)phương trình hoành độ giao điểm (P) và (d):
\(x^2=\left(2m-1\right)x-2m+2\Leftrightarrow x^2-\left(2m-1\right)x+2m-2=0\)(*)
(P) cắt (d) tại hai điểm phân biệt <=> PT(*) có 2 nghiệm pb <=>
\(\Delta>0\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)>0\Leftrightarrow4m^2-12m+9>0\)
\(\Leftrightarrow x\in\left(-\infty;\dfrac{3}{2}\right)\cup\left(\dfrac{3}{2};+\infty\right)\)