Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p > 3 nên p có dạng là 3k + 1 hoặc 3k + 2
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3( k + 2 ) là hợp số => loại
Vậy p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3( k + 3 ) là hợp số ( đpcm )
Vậy p + 8 là hợp số
Cbht
gọi UWCLN(2n+3;3n+4) là d
2n +3 chia hết cho d, 3n+4 chia hết cho d
2n.3+3.3 chia hết cho d, 3n.2+4.2 chia hết cho d
6n +9 chia hết cho d, 6n+8 chia hết cho d
6n +9- 6n+ 8 chia hết cho d
6n +9- 6n- 8 chia hết cho d
1 chia hết cho d
d=1
với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.
Cho mình hỏi tại sao đoạn đầu bạn lại tách 2n +3 thành 2n.3 +3.3 và 3n +4 thành 3n.2 +4.2 vậy ạ?
1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3
p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số
2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3
b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.
Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số
B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y
⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)
⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15
⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1
⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28
p>3 suy ra p có dạng là 6k =1 hoặc 6k +5
nếu p có dạng 6k+2 suy ra p+4 = 6k +2 +4=6k +6chia hết cho 6 là hợp số (loại)
suy ra p có dạng 6k+1
p+8 = 6k +1 +8 = 6k + 9 chia hết cho 3
vậy p+8 là hợp số