Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi UWCLN(2n+3;3n+4) là d
2n +3 chia hết cho d, 3n+4 chia hết cho d
2n.3+3.3 chia hết cho d, 3n.2+4.2 chia hết cho d
6n +9 chia hết cho d, 6n+8 chia hết cho d
6n +9- 6n+ 8 chia hết cho d
6n +9- 6n- 8 chia hết cho d
1 chia hết cho d
d=1
với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.
Cho mình hỏi tại sao đoạn đầu bạn lại tách 2n +3 thành 2n.3 +3.3 và 3n +4 thành 3n.2 +4.2 vậy ạ?
1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3
p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số
2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3
b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.
Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số
Trả lời:
+ Vì \(p>3\)
Mà p là số nguyên tố
\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)\((k\inℕ^∗)\)
+ Xét\(p=3k+2\)
\(\Rightarrow p+4=3k+1+2=3k+3=3(k+1)\)
Vì \(k\inℕ^∗\)\(\Rightarrow k+1\inℕ^∗\)
Mà \(3⋮3\)
\(\Rightarrow3\left(k+1\right)⋮3\)
\(\Rightarrow p+4⋮3\)
\(\Rightarrow\)p+4 là hợp số (Loại)
+ Xét \(p=3k+1\)
\(\Rightarrow p+4=3k+1+4=3k+5\)
Vì\(3k⋮3\)
5 không chia hết cho 3
\(\Rightarrow3k+5\)không chia hết cho 3
\(\Rightarrow p+4\)không chia hết cho 3
\(\Rightarrow p+4\)là số nguyên tố (Chọn)
\(\Rightarrow2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)\)
Vì\(k\inℕ^∗\)\(\Rightarrow2k+1\inℕ^∗\)
Mà\(3⋮3\)
\(\Rightarrow3\left(2k+1\right)⋮3\)
\(\Rightarrow2p+1⋮3\)
Mà\(p>3\Rightarrow2p+1>3\)
Do đó: 2p + 1 là hợp số (đpcm)
Vậy 2p + 1 là hợp số.
Hok tốt!
Good girl
Vì p > 3 nên p có dạng là 3k + 1 hoặc 3k + 2
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3( k + 2 ) là hợp số => loại
Vậy p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3( k + 3 ) là hợp số ( đpcm )
Vậy p + 8 là hợp số
Cbht