Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\dfrac{n-5}{n+1}=\dfrac{n+1-6}{n+1}=\dfrac{n+1}{n+1}-\dfrac{6}{n+1}\)\(\Rightarrow A=1-\dfrac{6}{n+1}\)
để A tối giản \(\Leftrightarrow1-\dfrac{6}{n+1}\) tối giản
\(\Rightarrow\dfrac{6}{n+1}\) tối giản => ƯCLN (6;n+1)=1
\(\Leftrightarrow n+1\ne6k\Leftrightarrow n\ne6k-1\)
Vậy \(n\ne6k-1\) để A tối giản
tik mik nha !!!
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
a) \(A=\dfrac{6n+5}{3n+2}=\dfrac{2\left(3n+2\right)+1}{3n+2}\)
\(Để\) \(\dfrac{6n+5}{3n+2}\in Z\) \(\Rightarrow1⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(1\right)=\left(-1;1\right)\)
3n+2 | -1 | 1 |
n | -1 | \(\dfrac{-1}{3}\) |
a) Ta có: A=\(\dfrac{6n+5}{3n+2}=\dfrac{2\left(3n+2\right)+1}{3n+2}\\ \Rightarrow1⋮3n+2\)
Do đó 3n+2 là ước của 1.
Ư(1)={-1 ; 1}
Ta lập bảng sau:
3n+2 | -1 | 1 |
n | -1 | \(\dfrac{-1}{3}\) |
Vậy \(n\in\left\{-1;\dfrac{-1}{3}\right\}\).
b) Ta có: A=\(\dfrac{6n+5}{3n+2}=\dfrac{2\left(3n+2\right)+1}{3n+2}\\ \Rightarrow1⋮3n+2\)
Vậy phân số A là phân số tối giản.
a, Gỉa sử phân số\(\dfrac{2n+5}{3n+7}\) chưa tối giản
Khi đó gọi d là một ước nguyên tố của 2n+5 và 3n+7
Ta có: 2n+5\(⋮\) d; 3n+7\(⋮\) d
\(\Rightarrow\)3(2n+5)-2(3n+7) \(⋮\) d
\(\Rightarrow\)6n+15- 6n- 14\(⋮\)d
\(\Rightarrow\)1\(⋮\) d
Mà d là số nguyên tố\(\Rightarrow\)d \(\in\)\(\varnothing\)
Vậy phân số \(\dfrac{2n+5}{3n+7}\) tối giản với mọi n\(\in\)Z
b, Để Q\(\in\)Z\(\Rightarrow\) 2n+5\(⋮\) 3n+7
\(\Rightarrow\)6n+15\(⋮\) 3n+7
\(\Rightarrow\)6n+ 14 + 1\(⋮\)3n+7
\(\Rightarrow\)2.(3n+7)+1\(⋮\)3n+7
\(\Rightarrow\)1:3n+7\(\Rightarrow\)3n+7\(\in\)Ư(1)={\(\pm\)}
+, Với 3n+7=-1
\(\Rightarrow\)3n=(-1)-7
\(\Rightarrow\)2n=-8
\(\Rightarrow\)n=-8.3\(\notin\)Z
\(\Rightarrow\)Để Q \(\in\) Z thì n=-2
Chúc bạn học tốt
Để Q là số nguyên thì
\(2n+5⋮3n+7\)
\(\Rightarrow3\left(2n+5\right)=6n+15=2\left(3n+7\right)+1⋮3n+7\)
Vì \(2\left(3n+7\right)⋮3n+7\)
\(\Rightarrow1⋮3n+7\)
3n+7=1=>n=-2
3n+7=-1=>n=/
Vậy số nguyên để Q là số nguyên là -2
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #