Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\dfrac{n-5}{n+1}=\dfrac{n+1-6}{n+1}=\dfrac{n+1}{n+1}-\dfrac{6}{n+1}\)\(\Rightarrow A=1-\dfrac{6}{n+1}\)
để A tối giản \(\Leftrightarrow1-\dfrac{6}{n+1}\) tối giản
\(\Rightarrow\dfrac{6}{n+1}\) tối giản => ƯCLN (6;n+1)=1
\(\Leftrightarrow n+1\ne6k\Leftrightarrow n\ne6k-1\)
Vậy \(n\ne6k-1\) để A tối giản
tik mik nha !!!
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
Bài 1 :
Gọi d là ước chung của 2n + 1 và 3n + 2 ( \(d\in Z;d\ne0\) )
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
Vì \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)
Vì \(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow6n+4-6n-3⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\)
Vậy \(\dfrac{2n+1}{3n+2}\) là phân số tối giản
Bài 2 : thiếu đề ?
Bài 3 :
Để A nguyên \(\Rightarrow2⋮n-1\Rightarrow n-1\) thuộc ước của 2
\(\Rightarrow n-1\in\left\{1;-1;-2;2\right\}\Rightarrow n\in\left\{2;0;-1;3\right\}\)
Vậy \(n\in\left\{2;0;-1;3\right\}\) thì A nguyên
1)
Gọi d là UCLN (2n+1;3n+2)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)3(2n+1)\(⋮\)d=)6n+3\(⋮\)d
\(\Rightarrow\)2(3n+2)\(⋮\)=)6n+4\(⋮\)d
Vì 6n+3 và 6n+4 \(⋮\)d nên
(6n+4)-(6n+3) chia hết cho d
1\(⋮\)d
=)\(\dfrac{2n+1}{3n+2}\)tối giản với mọi n
Ta có: \(\dfrac{23n^2-1}{35}\in Z\)
\(\Rightarrow23n^2-1=35k\left(k\in Z\right)\)
\(\Rightarrow23n^2=35k+1\)
Mà 35k + 1 chia cho 5 hoặc 7 đều dư 1 nên 23n2 chia cho 5 hoặc 7 đều dư 1
Hay n không chia hết cho 5, 7
Vậy \(\dfrac{n}{5},\dfrac{n}{7}\) là các phân số tối giản
a) \(A=\dfrac{6n+5}{3n+2}=\dfrac{2\left(3n+2\right)+1}{3n+2}\)
\(Để\) \(\dfrac{6n+5}{3n+2}\in Z\) \(\Rightarrow1⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(1\right)=\left(-1;1\right)\)
3n+2 | -1 | 1 |
n | -1 | \(\dfrac{-1}{3}\) |
a) Ta có: A=\(\dfrac{6n+5}{3n+2}=\dfrac{2\left(3n+2\right)+1}{3n+2}\\ \Rightarrow1⋮3n+2\)
Do đó 3n+2 là ước của 1.
Ư(1)={-1 ; 1}
Ta lập bảng sau:
3n+2 | -1 | 1 |
n | -1 | \(\dfrac{-1}{3}\) |
Vậy \(n\in\left\{-1;\dfrac{-1}{3}\right\}\).
b) Ta có: A=\(\dfrac{6n+5}{3n+2}=\dfrac{2\left(3n+2\right)+1}{3n+2}\\ \Rightarrow1⋮3n+2\)
Vậy phân số A là phân số tối giản.
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
1) Gọi d= ƯCLN(2n +1; 3n+2)
=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d
3n+2 chia hết cho d => 2.(3n+2) chia hết cho d
=> 2.(3n+2) - 3.(2n+1) chia hết cho d
=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản
2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5
=> (n+ 2) - (n-5) chia hết cho n - 5
=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}
n-5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n \(\in\) {-2;4;6;12}
1) Gọi d= ƯCLN(2n +1; 3n+2)
=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d
3n+2 chia hết cho d => 2.(3n+2) chia hết cho d
=> 2.(3n+2) - 3.(2n+1) chia hết cho d
=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản
2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5
=> (n+ 2) - (n-5) chia hết cho n - 5
=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}
n-5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n $\in$∈ {-2;4;6;12}