Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu p > 3 thì đúng là p2 sẽ là 1 số lẻ
Trong dãy số nguyên tố chỉ có duy nhất 1 số chẵn đó là 2
=> p2 + 2003 sẽ là 1 số chẵn (lẻ + lẻ = chẵn )
Từ đó suy ra p2+2003 là hợp số
neu p>3 thi p^2 se la mot so le
Trong day so nguyen to chi co duy nhat mot so chan la 2
=>p^2 + 2003 se la mot so chan (le+le=chan)
tu do suy ra p^2 + 2003 la hop so
a) sao lai hinh nhu sai?
p nguyen to chia het cho 3 => p chi co the =3
3 nho hon 9=> 3 chia 9 =0 du 3
dpcm
Câu hỏi này câu a như bị sai đề,
Câu b
p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 suy ra \(p^2\) chia 3 dư 1.
Suy ra \(p^2+2003\) chia hết cho 3 ( do 2003 chia 3 dư 2)
Vậy \(p^2+2003\) là hợp số.
Vì p là số nguyên tố bé hơn 3 nên p=2
Có p2+2003=22+2003=4+2003=2007
Có 2007 chia hết cho 3,chia hết cho 2007 và chia hết cho 1 nên p2+2003 là hợp số
hợp số. vì p > 3 => p khong chia hết cho 2
=>p2 khong chia het cho 2
=> p2 + 2003 chia hết cho 2
mà p2 + 2003 khác 2
=> p2+2003 là hợp số
a) Nếu n = 3k+1 thì n2n2 = (3k+1)(3k+1) hay n2n2 = 3k(3k+1)+3k+1
Rõ ràng n2n2 chia cho 3 dư 1
Nếu n = 3k+2 thì n2n2 = (3k+2)(3k+2) hay n2n2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n2n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p2p2 chia cho 3 dư 1 tức là p2=3k+1p2=3k+1 do đó p2+2003=3k+1+2003p2+2003=3k+1+2003 = 3k+2004⋮⋮3
Vậy p2+2003p2+2003 là hợp số
là hợp số
mk nghĩ vậy