K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4 
=>p^2-1 chia hết cho 8 (2) 
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3

30 tháng 6 2015

\(p^2-1=\left(p+1\right)\left(p-1\right)\)

trước hết p là số lẻ nêm p-1 và p+1 là 2 số chẵn liên tiếp nên chia hết cho 2*4=8

mặt khác p>3 nên p-1 hoặc p+1 chia hết cho 3

(3;8)=1 nên suy ra đpcm

27 tháng 3 2016

vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4 
=>p^2-1 chia hết cho 8 (2) 
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3

2 tháng 1 2016

Ta có :

 \(p^2-1=p^2+p-p-1=\left(p^2+p\right)-\left(p+1\right)=p\left(p+1\right)-\left(p+1\right)=\left(p+1\right)\left(p-1\right)\)

Vì p>3=> p là số lẻ => (p+1)(p-1)là 2 số chẵn liên tiếp => (p+1)(p-1) chia hết cho 8.  (1)

Vì p>3 =>p có dạng : 3k+1 và 3k+2 ( k là STN )

Với p=3k+1 thì :

   (p+1)(p-1) = (3k+1+1)(3k+1-1)=(3k+2).3k => (p+1)(p-1) chia hết cho 3 .

Với p=3k+2

   (p+1)(p-1)=(3k+2+1)(3k+2-1)=(3k+3)(3k+1)=3(k+1)(3k+1) => (p+1)(p-1) chia hết cho 3

=> (p+1)(p-1) chia hết cho 3 .  (2)

Từ (1) và (2) :

=> (p+1)(p-1) chia hết cho 24. ( Vì 3x8=24 và (3;8)=1 )

<=> p2-1 chia hết cho 24. ( p là số nguyên tố lớn hơn 3)

21 tháng 4 2016

Vì p là số nguyên tố, p>3 nên p không chia hết cho 3

Vì p không chia hết cho 3 nên p có 1 trong 2 dạng: 3k+1, 3k+2(k thuộc N*)

Xét hai trường hợp:

+)p=3k+1(k thuộc N*)

Khi đó p2-1=(3k+1)2-1=9k2+6k+1-1=9k2+6k=3(3k2+2k)

Vì k thuộc N* nên 3k2+2k thuộc N*

Vì thế 3(3k2+2k) chia hết cho 3 nên p2-1 chi hết cho 3

+)p=3k+2(k thuộc N*)

Khi đó p2-1=(3k+2)2-1=9k2+12k+4-1=9k2+12k+3=3(3k2+4k+1)

vì k thuộc N* nên 3k2+4k+1 thuộc N*

Vì thế 3(3k2+4k+1) chia hết cho 3 nên p2-1 chia hết cho 3

Vậy nếu p là số nguyên tố lớn hơn 3 thì p2-1 chia hết cho 3

4 tháng 3 2024

Giả sử p là số nguyên tố lớn hơn 33, vì vậy p là số lẻ. Do đó, ta có thể biểu diễn p dưới dạng p=2k+1,�=2�+1, với k là một số nguyên không âm.

Thay p vào p21�2-1, ta có: p2�2 - 11 == (2k+1)2(2�+1)2-11==4k2+4k+114�2+4�+1-1==4k(k+1)4�(�+1)

Ta nhận thấy rằng một trong hai số k hoặc k+1�+1 phải là số chẵn. Vì vậy, một trong hai số k hoặc    k+1�+1 chia hết cho 22. Vì vậy, p2�2-11 chia hết cho 2.4=8.2.4=8.

Ngoài ra, vì p là số nguyên tố lớn hơn 33, nên p không chia hết cho 33. Vì vậy, k và k+1�+1 không thể đều chia hết cho 33. Do đó, k hoặc k+1�+1 phải chia hết cho 33. Vì vậy, p2�2-11 chia hết cho 33.

Tổng hợp lại, p2�2-11 chia hết cho 88 và 33. Vì 88 và 33 nguyên tố cùng nhau, nên p2�2-11 chia hết cho 8.3=24.

31 tháng 3 2016

 Xét số nguyên tố p khi chia cho 3.

Ta có: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 thì p2 - 1 = (3k + 1)2 -1 = 9k2 + 6k chia hết cho 3
Nếu p = 3k + 2 thì p2 - 1 = (3k + 2)2 - 1 = 9k2 + 12k chia hết cho 3
Vậy p2 - 1 chia hết cho 3.

Đúng 100%

31 tháng 3 2016

Bạn Ninh Thế Quang Nhật ơi k cho mình một cái nhé ! Mình k cho bn rồi

15 tháng 4 2016

Nếu p là số nguyên tố lớn hơn 3 thì p2-1=p2-12=(p-1)(p+1)

Ta đặt A=(p-1)p(p+1) thì A chia hết cho 3

Mặt khác (p;3)=1

=>(p-1)(p+1) chia hết cho 3 hay p2-1 chia hết cho 3

27 tháng 12 2015

Vì p là số nguyên tô lớn hơn 3 nên p ko chia het cho 3

Do đó p^2 chia cho 3 dư 1 tức p^2=3k+1

=>p^2-1=3k+1-1=3k chia het cho 3(đpcm)

Vậy p^2-1 chia het cho 3

Tĩck nhé

15 tháng 4 2016

p là SNT, p>3 => p có dạng 3k+1 và 3k+2(k thuộc N*)

+)p=3k+1 => p^2-1 = (3k+1)^2-1

                              =(3k)^2+2.3k.1+1^2-1

                              =9.k^2+6k 

                            =>p^2-1 chia hết cho

+)p=3k+2=> p^2-1 = (3k+2)^2-1

                              =(3k)^2+2.3k.2+2^2-1

                              =9.k^2+12k +3

                            =>p^2-1 chia hết cho 

Vậy ..........

6 tháng 11 2017

Vì p và q nguyên tố > 3 nên p và q đều lẻ => p^2 và q^2 đều chia 8 dư 1 => p^2 - q^2 chia hết cho 8 (1)

Lại có p và q nguyên tố > 3 nên p và q đều ko chia hết cho 3 => p^2 và q^2 đều chia 3 dư 1 => p^2 - q^2 chia hết cho 3 (2)

Từ (1) và (2) => p^2 - q^2 chia hết cho 24 ( vì 3 và 8 nguyên tố cùng nhau )

2 tháng 2 2016

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.