Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 567^4 có chữ số tận cùng là 1.
=> (567^4)^1010 có chữ số tận cùng là 1.
hay 567^4040 có chữ số tận cùng là 1.
Mà 201^2013 có chữ số tận cùng là 1.
Do đó:567^4040 - 201^2013 có chữ số tận cùng là 0.
=> 567^4040 - 201^2013 chia hết cho 10. (vì nó có chữ số tận cùng là 0)
Vậy 567^4040 - 201^2013 chia hết cho 10.
cho 1 kích nha!
Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Bài 1: CM A = n2 + n + 6 ⋮ 2
+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)
Khi đó: A = (2k)2 + 2k + 6
A = 4k2 + 2k + 6
A = 2.(2k2 + k + 3) ⋮ 2
+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ
Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn
⇒ A = n2 + n + 6 là số chẵn
A = n2 + n + 6 ⋮ 2
+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N
Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:
Bài 2: CM: A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N
Với n = 1 ta có: A = 13 + 1.5
A = 1 + 5 = 6 ⋮ 6
Giả sử A đúng với n = k (k \(\in\) N)
Khi đó ta có: A = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)
Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k + 1
Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6
Thật vậy với n = k + 1 ta có:
A = (k + 1)3 + 5(k + 1)
A = (k +1).(k + 1)(k + 1) + 5.(k +1)
A = (k2 + k + k +1).(k + 1) + 5k +5
A = [k2 + (k + k) + 1].(k + 1) + 5k + 5
A = [k2 + 2k + 1].(k + 1) + 5k + 5
A = k3 + k2 + 2k2 + 2k + k +1 +5k +5
A = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5)
A = (k3 + 5k) + 3k2 + 3k + 6
A = (k3 + 5k) + 3k(k +1) + 6
k.(k +1) là tích của hai số liên tiếp nên luôn chia hết cho 2
⇒ 3.k.(k + 1) ⋮ 6 (2)
6 ⋮ 6 (3)
Kết hợp (1); (2) và (3) ta có:
A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N
Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)
Co 101 cap 2 so
(1+7)+(7^2+7^3)+...+(7^200+7^201)
(1+7)+7^2(1+7)+...+7^200(1+7)
8+7^2*8+...+7^200*8
8*(1+7^2+...+7^200
Nho cho to nhe!!!!!!!!!
Trả lời :
Bn tham khảo link này :
Câu hỏi của Linh Chi - Toán lớp 6 - Học toán với OnlineMath
a) Có:(2014-4):3+1=671 số hạng
S=(2014+4).671:2=677039
c) ..........................................................
Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath
1 + 7 + 72 + 73 + ... + 7201
= ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7200 + 7201 )
= ( 1 + 7 ) + 72 . ( 1 + 7 ) + ... + 7200 . ( 1 + 7 )
= 8 + 72 . 8 + ... + 7200 . 8
= 8 . ( 1 + 72 + ... + 7200 ) \(⋮\)8 ( đpcm )
Ta có 1+7=8 chia hết cho 8
Từ 7\(^2\) đến 7\(^{201}\) có (201-2):1 +1=200
Ta nhốm 4 số (7\(^2\)+7\(^3\)+7\(^4\)+7\(^5\))=19600 \(⋮\)8
Mà 200\(⋮\)4 các nhóm chia hết cho 4
\(\Rightarrow\) biểu thức chia hết cho 8
a, Vì 3 khong chia het cho 9
Các hạng tử còn lại đều chia hết cho 9
Nên S không chia hết cho
b, Tính được số số hạng của tông S là 1008 số hạng
S=(3+3^3+3^5)+(3^7+3^9+3^11)+...+(3^2011+3^2013+3^2015)
S=3.91+3^7.91+...+3^2011.1 chia het cho 9
Kết luận : S chia het cho 7
S=(3+3^3)+(3^5+3^7)+...+(3^2013+3^2015)
S=3.10+3^5.10+...+3^2013.10 chia hết cho 10
Kết luận : S chia hết cho 10
Vì (10,7)=1 nên S chia het cho 70
đúng nhé
Chứng tỏ S không chia hết cho 9:
Giải:
Ta thấy 3=3
33 = 32.3
35 = 32.33
37 = 32.35
........
32013 = 32.32011
32015 = 32.32013
Phân tích ra theo dạng 32.n (vì 32 = 9)
Qua phần phân tích trên ta thấy các số 35, 37,..., 32013, 32015 đều chia hết cho 9 (tức là 32)
=> 35 + 37 +...+ 32013 + 32015 chia hết cho 9
Mà ta thấy 3 không chia hết cho 32 (không chia hết cho 9)
Nên 3 + 35 + 37 +...+ 32013 + 32015 không thể chia hết cho 9
Vậy S không chia hết cho 9
Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và a2b2 = 2.(-5) =(-1).10 =c2d2
P(x) = (9x2 – 9x – 10)(9x2 + 9x – 10) + 24x2
Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:
Q(y) = y(y + 10x) = 24x2
Tìm m.n = 24x2 và m + n = 10x ta chọn được m = 6x , n = 4x
Ta được: Q(y) = y2 + 10xy + 24x2
= (y + 6x)(y + 4x)
Do đó: P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).
Ta có : p = 72012.7 + 2100.2 + 1
<=> p = 74.503.7 + 24.25.2 + 1
<=> p = (......1).7 + (......6).2 + 1
<=> p = (......7) + (......2) + 1
<=> p = (......0)
Vì p có chữ số tận cùng là 0 nên p chia hết cho 10