Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔKBA và ΔKCB có
góc KBA=góc KCB
góc CKB chung
=>ΔKBA đồng dạng với ΔKCB
=>KB/KC=KA/KB
=>KB^2=KA*KC
b: Xét (O) có
KB,KD là tiép tuyến
nên KB=KD
mà OB=OD
nên OK là trung trực của BD
=>OK vuông góc với BD
Xét ΔOBK vuông tại B có BI là đường cao
nên KI*KO=KB^2=KA*KC
=>KI/KA=KC/KO
=>KI/KC=KA/KO
=>ΔKIA đồng dạng với ΔKCO
=>góc KIA=góc KCO
=>góc AIO+góc ACO=180 độ
=>AIOC là tứ giác nội tiếp
O O' A B C D K I E
Mình sẽ giải lại 2 câu a và b.
a) Vì (O) và (O') giao nhau tại A và B nên AB vuông góc OO'. Do đó ^BO'O = 1/2.^AO'B = ^BDA
Tương tự ^BOO' = ^BCA. Từ đó \(\Delta\)BOO' ~ \(\Delta\)BCD (g.g) (đpcm).
b) Ta thấy: ^KDA = ^ABD (=1/2.Sđ(AD nhỏ của (O')). Tương tự ^KCA= ^ABC
Nên ta có: ^KCB + ^KDB = ^BCD + ^BDC + ^KDA + ^KCA = ^BDC + ^BCD + ^ABD + ^ABC = 1800
Suy ra tứ giác BCKD nội tiếp (đpcm).
c) Vì IE // DK nên ^DIE = ^KDA (So le trong) = ^ABD (cmt) => ^DIE = ^ABE => Tứ giác AIEB nội tiếp
=> ^BAE = ^BIE = ^BKD (Vì IE // KD) = ^BCD (Tứ giác BCKD nt) = 1/2.Sđ(AB nhỏ của (O)
Do vậy AE là tiếp tuyến của (O) (đpcm).
a) Xét tam giác KDA và KCD có:
góc AKD chung
góc KDA=KCD
suy ra hai tam giác đồng dạng
b) Xét (o) có tứ giác ABCD nội tiếp
góc ACD=ABD
góc DAC=DBC
sau đó bạn xét tam giác ABD và tam giác DBC đồng dạng là xong
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: ΔOBC cân tại O có OI là trung tuyến
nên OI vuông góc BC
Xét (O) có
AM,AN là tiếp tuyến
=>AM=AN
mà OM=ON
nên OA là trung trực của MN
=>OA vuông góc MN tại H
Xét ΔAHK vuông tại H và ΔAIO vuông tại I có
góc HAK chung
=>ΔAHK đồng dạng vớiΔAIO
=>AH/AI=AK/AO
=>AH*AO=AK*AI=AB*AC
A nằm giữa K và C tại sao lại CM tam giác KCA????