K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

giup mk vs

14 tháng 12 2016

O A B x y d M P N I

a/ Xét \(\Delta AOM\)và \(\Delta BOP\)

\(\hept{\begin{cases}AO=BO\\\widehat{AOM}=\widehat{BOP}\\\widehat{OAM}=\widehat{OBP}=90\end{cases}}\)

\(\Rightarrow\Delta AOM=\Delta BOP\)

\(\Rightarrow OM=OP\)

Ta lại có ON vuông góc với MP

\(\Rightarrow ON\)vừa là đường cao vừa là đường trung tuyến nên \(\Delta MNP\) cân tại N

\(\Rightarrow\widehat{NMP}=\widehat{NPM}\)

b/ Xét  \(\Delta OIN\)và \(\Delta OBN\)

\(\hept{\begin{cases}ON\left(chung\right)\\\widehat{OIN}=\widehat{OBN}=90\\\widehat{ONI}=\widehat{ONB}\left(\widehat{ONI}+\widehat{OMN}=\widehat{ONB}+\widehat{OPN}=90\right)\end{cases}}\)

\(\Rightarrow\Delta OIN=\Delta OBN\)

\(\Rightarrow OI=ON=R\)

\(\Rightarrow MN\) là đường tuyeesp tuyến (O) tiếp điểm tại I

c/ Ta có \(\hept{\begin{cases}MI=AM\\NI=BN\end{cases}\left(1\right)}\)

Xét \(\Delta OIM\)và \(\Delta NIO\)

\(\hept{\begin{cases}\widehat{OIM}=\widehat{NIO}=90\\\widehat{IMO}=\widehat{ION}\left(+\widehat{IOM}=90\right)\end{cases}}\)

\(\Rightarrow\Delta OIM\approx\Delta NIO\)

\(\Rightarrow\frac{OI}{NI}=\frac{MI}{OI}\Rightarrow MI.NI=OI^2=R^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AM.BN=R^2\)

29 tháng 11 2017

O B A M D N I

a) Ta thấy ngay \(\Delta MAO=\Delta DBO\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MO=DO\)

Xét tam giác MNP có NO là đường cao đồng thời trung tuyến nên tam giác MNP cân tại N.

b) Do tam giác MNP cân tại N nên NO cũng đồng thời là phân giác.

Vậy thì \(\Delta ION=\Delta BON\) (Cạnh huyền góc nhọn)

\(\Rightarrow OI=OB=R\)

Lại có \(OI\perp MN\Rightarrow\) MN vuông góc OI tại I hay MN là tiếp tuyến của (O)

c) Ta thấy ngay \(AM.BN=MI.IN\)

Xét tam giác vuông MON có OI là đường cao nên \(MI.IN=OI^2=R^2\)

\(\Rightarrow AM.BN=R^2\)

d) Do AM và BN cùng vuông góc với AB nên ANNB là hình thang vuông

 \(S_{AMNB}=\frac{\left(AM+NB\right).AB}{2}=\frac{\left(MI+IN\right).AB}{2}=\frac{MN.AB}{2}\)

Do AB không đổi nên diện tích hình thang vuông AMNB nhỏ nhất khi MN nhỏ nhất.

MN là đường xiên nên nó nhỏ nhất khi là đường vuông góc, nói cách khác là tứ giác AMNB là hình chữ nhật.

Khi đó AM = OI = R.

Vậy khi M cách O một khoảng bằng R thì diện tích tứ giác AMNB nhỏ nhất.

21 tháng 12 2016

TIA BM CAT Ax TAI, N TIEP THEO TU LAM

26 tháng 12 2016

mấy bạn tl nhah dùm mình đi