K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).

a) cm: A,B,O,C cùng thuộc một đường tròn.

b) cm: OA vuông BC tại H và OD= OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.

c) cm: BC trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.

Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.

a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.

b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.

c) cm: BC là tia phân giác của góc ABH.

d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.

0
14 tháng 7 2015

Trên BC lấy I sao cho IC=IB

Ta có AM=MC=AC/2=20/2= 10 cm

Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm

Áp dụng Pytago trong tam giác vuông AMH: AH2= AM- MH2 = 10- 82= 36 ----> AH=6 cm

có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)

Từ I kẻ IK vuông góc AB

có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB) 

---> MIKH là hình bình hành

---> MI=HK=12 cm; MH=IK=8 cm

BK= AB-AH-HK = 24-6-12=6 cm

Xét tam giác AMH và tam giác BIK:

     AH=BK=6 

     góc AHM= góc BKI= 90O

      MH=IK=8

----> tam giác AMH=tam giác BIK(c.g.c)

----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA

----> tam giác ABC cân tại C

b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)

----> AM=MC=IB=IC=10 cm

Kéo dài CO cắt AB tại D

tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O

có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o

Tương tự với tam giác OCB được  OI vuông góc BC hay góc OIC=90o

Xét tam giác vuông OMC và tam giác vuông OIC:

     MC=IC=10cm

    OC cạnh chung

--->tam giác OMC = tam giác OIC (ch.cgv)

--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->

  • CD vuông góc AB hay góc ADC=90o
  • AD=BD=AB/2 = 12 cm

Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256  ---> CD=16 cm

Đặt OC=OA=X --> OD= CD-OC = 16 - X

Theo Pytago tam giác AOD: AO2= OD2+AD2

                                                     <-->X2= (16-X)2 + 122

                                                     <--> 162 -32X + X2 +122 - X2=0

                                       <--> 400 - 32X=0

                                       <--> X= -400/-32= 12,5 cm

 Vậy bán kính đường tròn bằng 12,5 cm

     

 

     

    

4 tháng 9 2017

tại sao bạn không kẻ đường cao CD. Như thế sẽ đỡ mất thời gian chứng minh

25 tháng 12 2016

Hình thì mình thua nha bạn

25 tháng 12 2016

(Bài này có dính líu đến tứ giác nội tiếp một chút, không biết bạn học chưa. Mình sẽ cố né nội dung đó.)

\(A,O,B,C\) cùng thuộc đường tròn đường kính \(AO\).

\(B,O,C,E\) cùng thuộc đường tròn đường kính \(BE\).

(Bạn có thể chứng minh 2 điều này bằng các góc vuông)

Mà đường tròn ngoại tiếp tam giác \(BOC\) chỉ có 1 nên \(A,B,O,C,E\) cùng thuộc đường tròn.

\(AECO\) là hình thang nội tiếp nên nó là hình thang cân.

Từ đó CM được \(GA=GO,IA=IO\) và suy ra \(IG\) là đường trung trực của \(OA\).

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
15 tháng 12 2017

O A B C D E H F

a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)

Xét tam giác vuông ABC, đường cao BD ta có:

\(AB^2=AD.AC\)  (Hệ thức lượng)

b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.

Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)

Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Hay AB = AE.

Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)

Vậy AE là tiếp tuyến của đường tròn (O)

c) Xét tam giác vuông OBA đường cao BH, ta có:

\(OB^2=OH.OA\) (Hệ thức lượng)

\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)

Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)

d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)

Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)

Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.

Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:

\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)

15 tháng 12 2017

ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu

loading...  loading...