K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2020

sdadssad

bạn sáng ko đc trả lời spam

1 tháng 9 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

27 tháng 6 2020

Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )

a) Chứng minh rằng ABOC là tứ giác nội tiếp

b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC

c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng

16 tháng 12 2015

tick mik đc 300 điểm hỏi đáp nha,mik sẽ tick lại

20 tháng 11 2017

a/ * dựa vào tính chất đường trung tuyến ứng vs 1 cạnh = 1/2 cạnh ấy thì tam giác đó vuông ta sẽ CM đc tg BCD vuông tại C

    *Có AC=AB(vì đg thẳng là tiếp tuyến của đg tròn vuông góc với bk đi qua tiếp điểm)

=>A cách đều A và B

=>AH vuông góc BC

b/Áp dụng hệ thức lượng trong tam giác vuông ABO có : OH.OA=OB^2=R^2

mk cx đg làm bài này nhg ms chỉ đến đây thôi

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

24 tháng 11 2017

OABCDHEMNFK

a) Do C thuộc đường tròn mà DB là đường kính nên góc \(\widehat{BCD}\) chắn nửa đường tròn.

\(\Rightarrow\widehat{BCD}=90^o\Rightarrow BC\perp DC\)

Theo tính chất hai tiếp tuyến cắt nhau, ta có OH là phân giác góc BOC. Lại có OBC là tam giác cân tại O nên OH cũng là đường cao.

Vậy \(OH\perp BC\)

b) Xét tam giác vuông OCA có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có:   \(OH.OA=OC^2=R^2\)

Xét tam giác vuông DBA có đường cao BE nên áp dụng hệ thức lượng trong tam giác vuông, ta có: 

\(DE.DA=BD^2=\left(2R\right)^2=4R^2\)

c) Xét tam giác MBA có OH và BE là các đường cao nên N là trực tâm.

Vậy thì \(MN\perp BA\)

Lại có \(BD\perp BA\) nên BD // MN.

d) Ta chứng minh \(OF\perp AD\)

Ta có \(\widehat{BCA}=\widehat{DCO}\) (Cùng phụ với góc OCB)

\(\Rightarrow\widehat{BCA}+90^o=\widehat{DCO}+90^o\Rightarrow\widehat{DCA}=\widehat{FCO}\)  (1)

Ta cũng có tứ giác ABOC nội tiếp nên \(\widehat{CAO}=\widehat{CBO}\)

Mà \(\widehat{CBO}=\widehat{CDF}\) (Cùng phụ với góc CFD)

\(\Rightarrow\widehat{CAO}=\widehat{CDF}\)

Vậy thì \(\Delta CAO\sim\Delta CDF\left(g-g\right)\Rightarrow\frac{CA}{CD}=\frac{CO}{CF}\Rightarrow\frac{CA}{CO}=\frac{CD}{CF}\) (2)

Từ (1) và (2) suy ra \(\Delta DCA\sim\Delta FCO\left(c-g-c\right)\Rightarrow\widehat{ADC}=\widehat{OFC}\)

\(\Rightarrow\widehat{ADF}-\widehat{CDF}=\widehat{CFD}-\widehat{OFD}\)

\(\Rightarrow\widehat{ADF}+\widehat{OFD}=\widehat{CFD}+\widehat{CDF}=90^o\)

\(\Rightarrow\widehat{DKF}=90^o\Rightarrow OF\perp AD\)

Xét tam giác cân DOE có OK là đường cao nên đồng thời là trung tuyến. Vậy K là trung điểm DE.

Xét tam giác vuông ABD có BE là đường cao nên \(\frac{1}{BE^2}=\frac{1}{BA^2}+\frac{1}{BD^2}=\frac{1}{5R^2}+\frac{1}{4R^2}=\frac{9}{20R^2}\)

\(\Rightarrow BE^2=\frac{20R^2}{9}\)

Xét tam giác vuông BED, theo định lý Pi-ta-go ta có:

\(DE^2=BD^2-BE^2=4R^2-\frac{20R^2}{9}=\frac{16R^2}{9}\)

\(\Rightarrow DE=\frac{4R}{3}\)

\(\Rightarrow KE=\frac{2R}{3}\)

24 tháng 11 2017

Cảm ơn ạ 

c: góc BDC=1/2*góc BOC=60 độ

BD//AC

=>góc DCx=góc BDC=60 độ(so le trong)

=>góc ODC=góc OCD=90-60=30 độ

góc BDO=góc CDO=30 độ

=>góc BOD=góc COD=120 độ

=>ΔBOD=ΔCOD

=>BD=CD

=>D nằm trên trung trực của BC

=>A,O,D thẳng hàng