K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath

Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\) 

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét (O) có

DC là tiếp tuyến

DA là tiếp tuyến

Do đó: DC=DA

Xét (O) có

EC là tiếp tuyến

EB là tiếp tuyến

Do đó: EC=EB

Ta có: DC+CE=DE

nên DE=DA+EB

b: Xét tứ giác ADCO có \(\widehat{DAO}+\widehat{DCO}=180^0\)

nên ADCO là tứ giác nội tiếp

=>\(\widehat{ADO}=\widehat{ACO}\)

mà \(\widehat{ACO}=\widehat{CAB}\)

nên \(\widehat{ADO}=\widehat{CAB}\)

26 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath

Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\) 

21 tháng 12 2018

Với câu c

Kẻ BC cắt DA tại một điểm là P

Ta có :  DO//CD(...)

              AO=OB(...)

==> DP=DA

Ta lại có: DA//EB. ==> IA/IE=AD/BE 

Mà AD=CD; BE=CE(Tính chất 2 tt cắt nhau) 

==>IA/IE=CD/CE  ==> CI//AD.  ==> CK//DA

. CI//PD. ==> CI/PD=BI/BD

. IK//DA  ==> IK/DA=BI/BD

==> CI/PD=IK/DA 

Mà PD=DA(..) ==>CI=IK

7 tháng 8 2020

Đề thi vào lớp 10 môn toán chuyên Sư Phạm Hà Nội năm 2020-2021

26 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath

Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\) 

4 tháng 12 2017

A B O C E F D I H K M J

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC

Vậy nên AE + BF = EC + CF = EF

b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:

\(DA^2=DC.DB\)

c)  Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)

Lại có AB = 2OB; AC = 2AH.

Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)

Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )

Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)

Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)

Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)

\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)

\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)

d) Từ A kẻ AJ song song với BD cắt BF tại J.

Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.

Vậy ta có D, O , J  thẳng hàng.

Xét tam giác AFJ có \(AB\perp FJ\)

\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)

Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\)  (1)

Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.

Vậy thì \(AM\perp IO\)   (2)

Từ (1) và (2) suy ra A, M , F thẳng hàng.