K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

a) Xét (O) có 

ΔNDP nội tiếp đường tròn(N,D,P∈(O))

NP là đường kính của (O)(gt)

Do đó: ΔNDP vuông tại D(Định lí)

⇒ND⊥DP tại D

hay ND⊥MP(đpcm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại N có ND là đường cao ứng với cạnh huyền MP, ta được: 

MN2=MD⋅MPMN2=MD⋅MP(đpcm)

b) Vì N,E∈(O) và N,O,E không thẳng hàng

nên NE là dây của (O)

Xét (O) có 

OM là một phần đường kính

NE là dây(cmt)

OM⊥NE tại H(gt)

Do đó: H là trung điểm của NE(Định lí đường kính vuông góc với dây)(đpcm)

8 tháng 2 2018

a) \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat{ACB}=90^o\). Vậy tam giác ABC vuông tại C.

Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:

\(PA^2=PC.PB\)

b) Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có PA = PM

Lại có OA = OM nên PO là trung trực của AM.

c) Ta có \(\widehat{CBA}=30^o\Rightarrow\widehat{CAB}=60^o\) hay tam giác CAO đều. Suy ra AC = R

Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:

\(\frac{1}{AC^2}=\frac{1}{AP^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{R^2}=\frac{1}{AP^2}+\frac{1}{4R^2}\)

\(\Rightarrow AP=\frac{2R}{\sqrt{3}}\)

\(\Rightarrow PO=\sqrt{PA^2+AO^2}=\frac{\sqrt{21}R}{3}\)

Xét tam giác vuông PAO, đường cao AN, áo dụng hệ thức lượng ta có:

\(\frac{1}{AN^2}=\frac{1}{PA^2}+\frac{1}{AO^2}\Rightarrow AN=\frac{2\sqrt{7}R}{7}\)

\(\Rightarrow AM=2AN=\frac{4\sqrt{7}}{7}R\)

d) Kéo dài MB cắt AP tại E.

Ta thấy ngay tam giác EMA vuông có PM = PA nên PA = PE

Do MH // AE nên áo dụng định lý Ta let ta có:

\(\frac{HI}{AP}=\frac{IB}{PB}=\frac{MI}{EP}\)

Do AP = EP nên MI = HI

Ta cũng có N là trung điểm AM nên NI là đường trung bình tam giác AMH.

\(\Rightarrow NI=\frac{AH}{2}\)

Xét tam giác vuông AMB, đường cao MH, áp dụng hệ thức lượng ta có:

\(AH.AB=AM^2\Rightarrow AH=\frac{8}{7}R\)

\(\Rightarrow NI=\frac{4}{7}R\)

a, xét từ giác AMNC có 
\(\widehat{CAM}\)=90CAM^=90∘ (Ac là tiếp tuyến của (O) , ˆ

\(\widehat{CNM}\)=90CNM^=90∘ (MN vuông góc với CD) => ˆ\(\widehat{CAM}+\widehat{CNM}\)=180

=> AMNC nội tiếp

Xét tứ giác BMND có ˆ\(\widehat{MNB}\)MBD^=90 ( BD là tiếp tuyến của (O) , \(\widehat{CND}\)=90 ( MN vuông góc với CD)

=> \(\widehat{MND}+\widehat{NAC}\)NAC^=180

=> Tứ giác BDMN nội tiếp

b, Ta có \(\widehat{CMN}=\widehat{NAC}\)NAC^ (cùng chắn CN)

=> \(\)\(\widehat{CMN}\)CMN^=1212 cung AN(1)

Ta cũng có\(\widehat{NMD}+\widehat{NMD}\)NBD^ (cùng chắn cung ND)

\(\widehat{NMD}\)=1212 cung NB(2)

Từ (1) và (2) => \(\widehat{CMD}+\widehat{NMD}\)NMD^1212 (cung AN + cung NB) 

=> \(\widehat{CMD}\)1212 cung AB = 18021802=90

=> tam giác CMD vuông tại M

Vì NMBD nội tiếp => \(\widehat{NDM}+\widehat{NBM}\)NBM^ ( góc nội tiếp cùng chắn cung AM) 

Mà \(\widehat{MCD}+\widehat{NBM}\)=90

=> \(\widehat{MCD}+\widehat{NBM}\)NBM^=90 (1)

Mặt khác \(\widehat{NAB}+\widehat{NBA}\)NBA^=90 (2)

Từ (1) và (2) => \(\widehat{MCD}=\widehat{NAB}\)

Xét tam giác ANB và CMD ta cs

\(\widehat{ANB}=\widehat{CMD}\) (=90)

\(\widehat{MCD}=\widehat{NAD}\)

=> 2 tam giác này bằng nhau