Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét (O) có
CE,CA là các tiếp tuyến
nen CE=CA và OC là phân giác của góc AOE(1)
Xét (O) có
DE,DB là các tiếp tuyến
nên DE=DB và OD là phân giác của góc BOE(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: CA=CE
OA=OE
Do đó: OC là trung trực của AE
=>OC vuông góc với AE
DE=DB
OE=OB
Do đo; OD là trung trực của EB
=>OD vuông góc với EB
Xét tứ giác EIOK có
góc EIO=góc EKO=góc IOK=90 độ
nên EIOK là hình chữ nhật
d: OK*OD=OB^2
OI*OC=OA^2
mà OB=OA
nên OK*OD=OI*OC
a: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của \(\widehat{MOA}\left(1\right)\)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của \(\widehat{MOB}\)(2)
Từ (1), (2) suy ra \(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)
\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>ΔCOD vuông tại O
b: AC+BD
=CM+MD
=CD
c:
Xét ΔCOD vuông tại O có OM là đường cao
nên \(CM\cdot MD=OM^2\)
=>\(CA\cdot BD=R^2\) không đổi