K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

a: Xét (O) có

CA,CM là tiếp tuyến

=>CA=CM và OC là phân giác của \(\widehat{MOA}\left(1\right)\)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của \(\widehat{MOB}\)(2)

Từ (1), (2) suy ra \(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

=>ΔCOD vuông tại O

b: AC+BD

=CM+MD

=CD

c:

Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot MD=OM^2\)

=>\(CA\cdot BD=R^2\) không đổi

15 tháng 11 2015

c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.

Vì MK vuông góc AB => MK // AC // BD

EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)

Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.

\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)

=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.

 

29 tháng 5 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác OMCN có:

∠(OMC) = 90 0  (AC ⊥ OD)

∠(ONC) = 90 0  (CB ⊥ OE)

∠(NCM) = 90 0  (AC ⊥ CB)

⇒ Tứ giác OMCN là hình chữ nhật

4 tháng 5 2020

Bài 2 : 

A B C D H

a ) Ta có : \(AH\perp BD\Rightarrow\widehat{AHD}=\widehat{BCD}=90^0\)

AD//BC \(\Rightarrow\widehat{ADH}=\widehat{DBC}\)

\(\Rightarrow\Delta AHB~\Delta DCB\left(g.g\right)\)

b ) Ta có : \(AB=12,BC=9\Rightarrow BD=\sqrt{AB^2+BC^2}=15\)

Từ câu a \(\Rightarrow\frac{AH}{CD}=\frac{AB}{DB}\)

\(\Rightarrow AH=\frac{AB.CD}{DB}=\frac{12.12}{15}=\frac{48}{5}\)

c ) Ta có \(\widehat{DAH}=\widehat{ABH}\left(+\widehat{BAH}=90^0\right)\)

\(\widehat{AHB}=\widehat{AHD}=90^0\)

\(\Rightarrow\Delta ADH~\Delta BAH\left(g.g\right)\)

\(\Rightarrow\frac{AH}{BH}=\frac{DH}{AH}\Rightarrow AH.AH=BH.DH\)

12 tháng 9 2017

Sử dụng tính chất hai tiếp tuyến

a, Ta có: AC = CM; BD = DM => AC+BD=CD

b,  C O A ^ = C O M ^ ; D O M ^ = D O B ^

=>  C O D ^ = 90 0

c, AC.BD = MC.MD =  M O 2 = R 2

d, Gọi I là trung điểm của CD. Sử dụng tính chất trung tuyến ứng với cạnh huyền trong tam giác vuông và đường trung bình trong hình thang để suy ra đpcm

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN//AC//BD