K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.a) cm: tam giác ABC vuông tại C.b) cm NE vuông góc ABc) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)B3: Cho nửa đường tròn (O)đường...
Đọc tiếp

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?

B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.

a) cm: tam giác ABC vuông tại C.

b) cm NE vuông góc AB

c) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)

B3: Cho nửa đường tròn (O)đường kính AB=2R. Gọi Ax, By là các ti8a vuông góc với AB tại A và B(Ax,By và nửa đường tròn cùng thuộc 1 nửa mặt phẳng bờ AB). Qua điểm C thuộc nửa đường tròn( C khác A, B). kẻ đường thẳng d là tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự ở M và N.

a)cm :MN=AM+BN

b) cm \(\Delta\)MON vuông

 c) AC giao với MO tại I, CB giao với ON tại K, cm tứ giác CIOK là hình chữ nhật

d) gọi D là giao điểm của BC  với Ax, cm MD=MA

0
16 tháng 9 2019

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Gọi (O’) là đường tròn đi qua D và tiếp xúc với AB tại B.

Đường tròn (O’) cắt CB tại F khác B. Chứng minh E F   / /   A B .

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Hai góc ở vị trí đồng vị  ⇒   E F / / A B

15 tháng 1 2019

bn vẽ hình đc chưa

16 tháng 1 2019

hình mình chưa vẽ đk 

7 tháng 11 2017

Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [O, C] Đoạn thẳng p: Đoạn thẳng [F, C] Đoạn thẳng q: Đoạn thẳng [C, H] Đoạn thẳng r: Đoạn thẳng [B, E] Đoạn thẳng s: Đoạn thẳng [C, E] Đoạn thẳng t: Đoạn thẳng [A, F] O = (1.42, 2.28) O = (1.42, 2.28) O = (1.42, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l

a) Ta thấy \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn AB. Vậy nên \(\widehat{ACB}=\frac{sđ\widebat{AB}}{2}=\frac{180^o}{2}=90^o\)

Vậy tam giác ABC là tam giác vuông tại C.

b) Do M là trung điểm của dây cung AC. Theo tính chất đường kính, dây cung, ta có \(OM\perp AC\) 

Xét tứ giác OMCH có \(\widehat{OMC}=\widehat{OHC}=90^o\) nên OMCH là tứ giác nội tiếp.

Đường tròn ngoại tiếp tứ giác trên có đường kinh là OC nên tâm I của đường tròn là trung điểm OC.

c) Xét tam giác vuông ABE có đường cao BC. Áp dụng hệ thức lượng trong tam giác ta có:

\(EC.EA=BE^2\)

Xét tam giác vuông BCE, theo định lý Pi-ta-go, ta có:

\(BE^2=OE^2-OB^2=OE^2-R^2\)

Vậy ta có ngay \(EC.EA=OE^2-R^2\)

d) Ta thấy CH // BE nên áp dụng định lý Talet ta có:

\(\frac{NH}{BF}=\frac{NC}{FE}\left(=\frac{AH}{AB}\right)\)

Lại có NH = HC nên BF = FE

Xét tam giác vuông BCE có CF là trung tuyến ứng vớ cạnh huyền nên FC = FB.

Vậy thì \(\Delta OCF=\Delta OBF\left(c-c-c\right)\Rightarrow\widehat{OCF}=\widehat{OBF}=90^o\)

hay CF là tiếp tuyến của đường tròn (I)

8 tháng 3 2020

cho mk cả lời giải của các phần trên đc ko mèo con dễ thương

8 tháng 3 2020

mk cần gấp