K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2015

a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).

(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)

b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)

ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH

=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)

c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID

tam giác ADH: DI là trung tuyến

tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.

Nhớ L I K E nha

 

 

11 tháng 5 2018

c. 4 điểm A,D,E,F cùng nằm trên đt đường kính (I) (gt) => ADEF là tứ giác nội tiếp (Định nghĩa)

=> \(\widehat{EFS}=\widehat{ADE}\)(Cùng bù với \(\widehat{AFE}\))

Vì BDEC là tứ giác nội tiếp (cmt) => \(\widehat{ADE}=\widehat{ECB}\)(Cùng bù với \(\widehat{BDE}\)) => \(\widehat{EFS}=\widehat{ECB}\)=> Tứ giác CEFS là tứ giác nội tiếp (DHNB) => \(\widehat{ESF}=\widehat{ECF}=\widehat{ACF}\)(2 góc nội tiếp cùng chắn \(\widebat{EF}\))

Lại có: ABCF là tứ giác nội tiếp (4 đỉnh A,B,C,F cùng thuộc đt (O) (gt)) => \(\widehat{ACF}=\widehat{ABF}\)(2 góc nội tiếp cùng chắn \(\widebat{AF}\))

=> \(\widehat{ESF}=\widehat{ABF}\)(1)

Áp dụng hệ thức lượng trong \(\Delta ABH\)vuông tại H với đường cao HD ta có: \(AH^2=AD.AB\)

Xét đt (I) có: \(\widehat{AFH}=90^o\)(Góc nội tiếp chắn nửa đt) => \(HF\perp AS\)

Áp dụng hệ thức lượng trong \(\Delta ASH\)vuông tại H với đường cao HF ta có: \(AH^2=AF.AS\)

=> \(AD.AB=AF.AS\Leftrightarrow\frac{AD}{AF}=\frac{AS}{AB}\)

Xét \(\Delta ADS\)và \(\Delta AFB\)có:

\(\widehat{A}\)Chung

\(\frac{AD}{AF}=\frac{AS}{AB}\)(cmt)

=> \(\Delta ADS~\Delta AFB\left(C.G.C\right)\)

=> \(\widehat{ASD}=\widehat{ABF}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ESF}=\widehat{ASD}\)hay \(\widehat{ESF}=\widehat{DSA}=\widehat{DSF}\)(Do \(\overline{A,F,S}\left(gt\right)\Rightarrow\widehat{DSA}=\widehat{DSF}\)) => 3 điểm S,D,E thẳng hàng (2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => ĐPCM 

d.  Vì sđ\(\widebat{AB}=60^o\)(gt) => \(\widehat{AOB}=60^o\Rightarrow\Delta AOB\)đều => AB = OA = OB = R 

Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại A có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{(2R)^2-R^2}=R\sqrt{3}\)

=> \(S\Delta ABC=\frac{1}{2}AB.AC=\frac{1}{2}R.R\sqrt{3}=R^2\frac{\sqrt{3}}{2}\)

Mà \(S\Delta ABC=\frac{1}{2}AH.BC\Rightarrow AH=\frac{2.S\Delta ABC}{BC}=\frac{2.\frac{R^2\sqrt{3}}{2}}{2R}=\frac{R\sqrt{3}}{2}\)

Gọi \(R^'\)là bán kính đường tròn ngoại tiếp đt (I) => \(R^'=\frac{AH}{2}=\frac{R\sqrt{3}}{4}\)

Xét \(\Delta ADE\)và \(\Delta ACB\)có:

\(\widehat{A}\)chung

\(\widehat{ADE}=\widehat{ACB}\)(Cmt) 

=> \(\Delta ADE~\Delta ACB\left(g.g\right)\)=> \(\frac{S\Delta ADE}{S\Delta ACB}=\left(\frac{R^'}{R}\right)^2=\left(\frac{\frac{R\sqrt{3}}{4}}{R}\right)^2=\left(\frac{\sqrt{3}}{4}\right)^2=\frac{3}{16}\)

=> \(S\Delta ADE=\frac{3}{16}.S\Delta ACB=\frac{3}{16}.\frac{R^2\sqrt{3}}{2}=\frac{3R^2\sqrt{3}}{32}\)

Ta có: \(S_{BDEC}=S\Delta ABC-S\Delta ADE=\frac{R^2\sqrt{3}}{2}-\frac{3R^2\sqrt{3}}{32}=\frac{13R^2\sqrt{3}}{32}\)

26 tháng 1 2019

B C A D G E F H M O N P S T

1) +) Xét đường tròn (AD): ^AED = ^AFD = 900 (Các góc nội tiếp chắn nửa đường tròn)

Áp dụng hệ thức lượng trong tam giác vuông: BD2 = BE.BA;  CD2 = CF.CA => (BD.CD)2 = AB.AC.BE.CF

Hay AD4 = AD.BC.BE.CF => AD3 = BC.BE.CF => \(\frac{AD^3}{BE.CF}=BC=2R\)

+) Chứng minh H,E,F thẳng hàng ?

Ta có: AE.AB = AF.AC (=AD2) => Tứ giác BEFC nội tiếp => ^CBE = ^AFE = ^EGH (Do tứ giác AGEF nội tiếp)

=> Tứ giác BEGH nội tiếp => ^GEH = ^GBH = ^GAF. Mà ^GAF + ^GEF = 1800 

Nên ^GEH + ^GEF = 1800 => 3 điểm H,E,F thẳng hàng (đpcm).

2) Ta thấy tứ giác BEGH và BEFC nội tiếp => AG.AH = AE.AB = AF.AC => Tứ giác GFCH nội tiếp

Theo ĐL Ptolemy cho tứ giác GFCH nội tiếp: FG.CH + GH.CF = CG.HF (đpcm).

3) Gọi S,T lần lượt là hình chiếu của N,P trên BC.

Xét đường tròn (P) có: ^ACM = 1/2.Sđ(AM = 900 - ^PMA => ^PMA = 900 - ^ACB.

Tương tự: ^NMA = 900 - ^ABC. Suy ra: ^PMA + ^NMA = 1800 - (^ABC + ^ACB) = 900 => ^PMN = 900

Từu đó dễ có: \(\Delta\)NSM ~ \(\Delta\)MTP (g.g) => NS.PT = MS.MT (*)

Xét \(\Delta\)MNP: ^PMN = 900 => \(S_{MNP}=\frac{MN.MP}{2}=\frac{\sqrt{\left(NS^2+MS^2\right)\left(PT^2+MT^2\right)}}{2}\)(ĐL Pytagore)

Áp dụng BĐT Bunhiacopsky: \(S_{MNP}\ge\frac{NS.PT+MS.MT}{2}=MS.MT=\frac{1}{4}BM.CM\)(Dựa vào (*) )

Vậy Min SMNP = 1/4.BM.CM = const (Vì M cố định). Đạt được khi A là trung điểm cung BC.

a: Xét (O) có 

ΔABC nội tiếp đường tròn

BC là đường kính

Do đó: ΔABC vuông tại A

Xét (I) có 

ΔADH nội tiếp đường tròn

AH là đường kính

Do đó: ΔADH vuông tại D

Xét (I) có

ΔAEH nội tiếp đường tròn

HA là đường kính

Do đó: ΔAEH vuông tại E

Xét tứ giác AEHD có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

Do đó: AEHD là hình chữ nhật

1 tháng 10 2021

tiếp đi bạn