Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(n^6+n^4-2n^2=n^2\left(n^4++n^2-2\right)\)
=\(n^2\left(n^4-1+n^2-1\right)\)
=\(n^2\left[\left(n^2-1\right)\left(n^2+1\right)+n^2-1\right]\)
=\(n^2\left(n^2-1\right)\left(n^2+2\right)\)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A=\(4k^2\left(2k-1\right)\left(2k+1\right)\left(4k^2+2\right)=8k^2\left(2k-1\right)\left(2k+1\right)\left(2k^2+1\right)\)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A=\(\left(2k+1\right)^2.2k\left(2k+2\right)\left(4k^2+4k+1+2\right)\)
=\(4k\left(k+1\right)\left(2k+1\right)^2\left(4k^2+4k+3\right)\)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra:\(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
Lời giải:
Đặt \(A=n^6+n^4-2n^2\)
\(\Leftrightarrow A=n^2(n^2-1)(n^2+2)\)
Ta chứng minh \(A\vdots 9\)
\(\bullet\) Nếu \(n\equiv 0\pmod 3\Leftrightarrow n\vdots 3\Rightarrow n^2\vdots 9\Rightarrow A\vdots 9\)
\(\bullet\) Nếu \(n\equiv \pm 1\pmod 3\Rightarrow n^2\equiv 1\pmod 3\)
Do đó, \(\left\{\begin{matrix} n^2-1\equiv 0\pmod 3\\ n^2+2\equiv 0\pmod 3\end{matrix}\right.\Rightarrow (n^2-1)(n^2+1)\vdots 9\Rightarrow A\vdots 9\)
Từ hai TH trên suy ra \(A\vdots 9(1)\)
Ta chứng minh \(A\vdots 8\)
Viết lại: \(A=n^2(n-1)(n+1)(n^2+2)\)
\(\bullet n=4k\Rightarrow n\vdots 4\rightarrow n^2\vdots 8\Rightarrow A\vdots 8\)
\(\bullet n=4k+1\Rightarrow n-1=4k\vdots 4\) và \(n+1=4k+2\vdots 2\Rightarrow A\vdots 8\)
\(\bullet n=4k+2\Rightarrow n\vdots 2\rightarrow n^2\vdots 4\) và \(n^2+2\vdots 2\Rightarrow A\vdots 8\)
\(\bullet n=4k+3\Rightarrow n-1=4k+2\vdots 2\) và \(n+1=4k+4\vdots 4\Rightarrow A\vdots 8\)
Từ các TH trên suy ra \(A\vdots 8(2)\)
Từ \((1),(2)\) mà $8,9$ nguyên tố cùng nhau nên \(A\vdots 72\) (đpcm)
Đặt \(B=a_1+a_2+...+a_{2016}\)
\(\Rightarrow A-B=\left(a_1^3+a_2^3+...+a_{2016}^3\right)-\left(a_1+a_2+....+a_{2016}\right)\)
\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_{2016}^3-a_{2016}\right)\)
\(=\left(a_1-1\right)a_1\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_{2016}-1\right)a_{2016}\left(a_{2016}+1\right)⋮6\)
Mà \(B⋮6\Rightarrow A⋮6\)
Lời giải:
Áp dụng định lý Fermat nhỏ:
Với $a$ là số tự nhiên sao cho $(a,11)=1$ thì:
$a^{10}\equiv 1\pmod {11}\Rightarrow a^{3330}\equiv 1\pmod {11}$
$\Rightarrow a^{3331}\equiv a\pmod {11}$
Còn với mọi $a\vdots 11$ thì $a^{3331}\equiv a\pmod {11}$ (hiển nhiên)
Do đó:
$1^{3331}+2^{3331}+...+2020^{3331}\equiv 1+2+3+...+2020\equiv 1010.2021\equiv 9.8\equiv 6\pmod {11}$
$\Rightarrow 1^{3331}+2^{3331}+...+2020^{3331}-6\equiv 0\pmod {11}$
Ta có đpcm.
\(N=1+6+6^2+..+6^{99}\)
\(N=\left(1+6\right)+6^2\left(1+6\right)+...+6^{98}\left(1+6\right)=7\left(1+6^2+6^4+..+6^{98}\right)\\ \)
\(N=7.\left[\left(1+6^2\right)+6^4\left(1+6^2\right)+6^{96}\left(1+6^2\right)\right]=7.37\left(1+6^4+...+6^{96}\right)\)
7.37=259=> dpcm