K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Ta nhận thấy : \(\frac{1}{n^2\left(n+1\right)^2}< \frac{2n+1}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\forall n>1,n\in N\)

Sửa đề nha : 1/4+1/36+... mới làm đc

\(\frac{1}{4}< 1-\frac{1}{4}\)

\(\frac{1}{36}< \frac{1}{4}-\frac{1}{9}\)

...Cộng hết lại đc

\(VT< 1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)\(\).Ta có N>1 nên

Hình như ko đc...Xem lại đề

10 tháng 3 2020

Chứng minh: \(\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2n\left(n+1\right)}\)

Ta có: \(\frac{1}{n^2+\left(n+1\right)^2}=\frac{1}{n^2+n^2+2n+1}=\frac{1}{2n^2+2n+1}\)

\(\Rightarrow\frac{1}{2n^2+2n+1}< \frac{1}{2n^2+2n}=\frac{1}{2n\left(n+1\right)}\)

Thay vào bài toán:

\(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}=\frac{1}{1^2+\left(1+1\right)^2}+\frac{1}{2^2+\left(2+1\right)^2}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2.1.2}+\frac{1}{2.2.3}+...+\frac{1}{2n+\left(n+1\right)}\)

\(=\frac{1}{2}.\left[\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}\right]\)

\(=\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n-1}\right)\)

\(=\frac{1}{2}-\frac{1}{2\left(n+1\right)}< \frac{1}{2}\left(đpcm\right)\)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

15 tháng 11 2017

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...................

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\).

\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}\)

\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+1-\frac{1}{2}+\frac{1}{2}-....+\frac{1}{n-1}-\frac{1}{n}\).

\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 2-\frac{1}{n}\)

\(\Rightarrowđpcm\)

15 tháng 11 2017

Gọi vế trái là A. Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2};\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}=\frac{1}{n-1}-\frac{1}{n}.\)

=> \(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

=> \(A< 2-\frac{1}{n}\) (ĐPCM)

16 tháng 5 2020

a) Ta có \(\frac{1}{n+k}>\frac{1}{2n}\)với k=1;2;...;n-1

=> \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}\)

Mặt khác ta có \(\frac{1}{n+k}+\frac{1}{n\left(+\left(n+1-k\right)\right)}< \frac{3}{2n}\)

\(\Leftrightarrow3k^2+3nk+n+3k\forall k=1;2;...;n\)

Với k=1 ta có \(\frac{1}{n+1}+\frac{1}{n+n}< \frac{3}{2n}\)

Với k=2 ta có \(\frac{1}{n+2}+\frac{1}{n+\left(n-1\right)}< \frac{3}{2n}\)

..........................................

Với k=n ta có \(\frac{1}{n+n}+\frac{1}{n+1}< \frac{3}{2n}\)

Cộng từng vế của 2 BĐT trên ta được

\(2\left(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\right)< \frac{3}{2n}+\frac{3}{2n}+....+\frac{3}{2n}=\frac{3n}{2n}=\frac{3}{2}\)

\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)(đpcm)

16 tháng 5 2020

Không cần chứng minh \(\frac{1}{2}< \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\)

4 tháng 11 2017

Khó phét ta