K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

gọi d \(\in\)ƯC(n+2,n+3)

=>\(\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Rightarrow1⋮d\)=>d=1;-1

=>n+2/n+3 là p/số tối giản

vậy...

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

18 tháng 2 2022

a, \(A=\dfrac{n+5}{n+4}=\dfrac{n+4+1}{n+4}=1+\dfrac{1}{n+4}\Rightarrow n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 41-1
n-3-5

b, đk n khác 4

Gọi ƯCLN (n+5;n+4) = d ( d\(\in Z\)

n + 5 - n - 4 = 1 => d = 1 

Vậy A là phân số tối giản với mọi giá trị nguyên, n khác 4 

 

 

6 tháng 2 2018

Bài 1:

Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)

Khi đó ta có:

a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản  (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản   (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

14 tháng 2 2017

Để CM \(\frac{n+5}{n+4}\) là phân số tối giản thì ta cần chứng minh n + 5 và n + 4 là nguyên tố cùng nhau

Gọi d là ước chung lớn nhất của n + 5 và n + 4

=> n + 5 và n + 4 chia hết cho d

=> (n + 5) - (n + 4) chia hết cho d

=> 1 chia hết cho d => d = 1

Vì ước chung lớn nhất của n + 5 và n + 4 là 1 => n + 5 và n + 4 là nguyên tố cùng nhau

=> \(\frac{n+5}{n+4}\) là phân số tối giản (đpcm)

14 tháng 2 2017

Thank you very much!

21 tháng 2 2017

Đặt UC(n+2,2n+3)=d

Ta có: 

\(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}2\left(n+2\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow1=d\)

Vậy phân số tối giản

21 tháng 2 2017

gọi ucln của n+2va 2n+3 là d

ta có:

n+2=2n+4;2n+3 du nguyen

2n+4-2n+3

=>1chia het cho d

vi d la ucln cua 1=>d=1

=>do la phan so toi gian

28 tháng 4 2016

Gọi d là ƯC(n+1 ; n+2)

=> n+1 chia hết cho d  và n+2 chia hết cho d

=>(n+2)-(n+1) chia hết d

=> 1 chia hết d

=> D=1

Vậy n+1/n+2 là phân số tối giản

28 tháng 4 2016

Để n+3/n-2 \(\in\) Z

=> n+3 chia hết n-2

=> n-2 + 5 chia hết n-2

=> 5 chia hết n-2

=> n-2 \(\in\) Ư(5)={-1;1;-5;5}

Ta có: 

n-2-11-55
n13-37