Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ hai đường thẳng trong 4 đường thẳng hợp với 2 đường trong 5 đường thẳng vuông góc với chúng tạo thành một hình chữ nhật.
Có C42 = 6 cách chọn 2 đường thẳng trong 4 đường thẳng song song thứ nhất.
Có C52 = 10 cách chọn 2 đường thẳng trong 5 đường thẳng vuông góc với các đường thẳng trên.
Vậy số hình chữ nhật được tạo thành là: 6.10 = 60 cách
Trong mặt phẳng có bao nhiêu hình chữ nhật được tạo thành từ bốn đường thẳng song song với nhau và năm đường thẳng vuông góc với bốn đường thằng song song đó ?
Bài giải:
Để lập được một hình chữ nhât, phải thực hiện liên tiếp hai hành động sau đây:
Hành động 1: Chọn 22 đường thẳng (không phân biệt thứ tự) từ nhóm 44 đường thẳng song song đã cho. Số các cách để thực hiện hành động này là C24=4!2!2!=6C42=4!2!2!=6 (cách)
Hành động 2: Chọn 22 đường thẳng (không phân biệt thứ tự) từ nhóm 55 đường thẳng đã cho, vuông góc với 44 đường thẳng song song. Số các cách để thực hiện hành động này là
C25=5!2!3!=10C52=5!2!3!=10 (cách).
Theo quy tắc nhân suy ra số các cách để lập thành một hình chữ nhật từ các đường thẳng đã cho là 6.10=606.10=60 (cách).
Qua trên suy ra từ các đường thẳng đã cho có thể lập được 6060 hình chữ nhât.
a, 2 đường thẳng // với nhau khi
\(\hept{\begin{cases}k+3=5-k\\2\ne3\end{cases}\Leftrightarrow k=1}\)
b, 2 đường thẳng cắt nhau khi
\(k+3\ne5-k\Leftrightarrow k\ne1\)
c, 2 đường thẳng trên ko thể trùng nhau được vì hệ số tự do 2 \(\ne\)3
Hàm số y = ( k + 1) x + 3 có các hệ số a = k + 1, b = 3
Hàm số y = ( 3 – 2k ) x + 1 có các hệ số a' = 3 - 2k, b' = 1
Hai hàm số là hàm số bậc nhất nên a và a' khác 0, tức là :
\(k+1\ne0\)và \(3-2k\ne0\)hay \(k\ne-1\)và \(k\ne\frac{3}{2}\)( * )
b) Hai đường thẳng y = ( k + 1 ) x + 3 và y = ( 3 – 2k ) x + 1 là hàm số bậc nhất nên \(a\ne0\) và \(a'\ne0\) Hai đường thẳng này cắt nhau khi \(a\ne a'\) tức là :
\(\hept{\begin{cases}k+1\ne0\\3-2k\ne\\k+1\ne3-2k\end{cases}0}\Leftrightarrow\hept{\begin{cases}k\ne-1\\2k\ne\\3k\ne2\end{cases}3}\Leftrightarrow\hept{\begin{cases}k\ne-1\\k\ne\\k\ne\frac{2}{3}\end{cases}\frac{3}{2}}\)
Với \(k\ne-1 ; k\ne\frac{3}{2} ; k\ne\frac{2}{3}\) thì đồ thị của hai hàm số trên là hai đường thẳng cắt nhau.
c) Do \(b\ne b'\) ( vì \(3\ne1\) ) nên hai đường thẳng không thể trùng nhau với mọi giá trị k.