K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).a) CM: IE.IF= IC.IDb) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội...
Đọc tiếp

Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).

a) CM: IE.IF= IC.ID

b) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội tiếp.

c)Gọi H,K lần lượt là trung điểm CF, ED. CMR: tam giác CHI đồng dạng tam giác EKI, từ đó chỉ ra rằng I là trung điểm của đoạn thẳng MN.

d) Gọi L là giao điểm của AC, DB; T là giao điểm của CE và GD; V là giao điểm của hai đường tròn ngoại tiếp các tam giác AEV và tam giác DET. CMR: 4 điểm D,A,L,Q cùng thuộc một đường tròn, từ đó chỉ ra rằng ba điểm L,T,V thẳng hàng

0
8 tháng 4 2018

Cứ hai đường thẳng trong 4 đường thẳng hợp với 2 đường trong 5 đường thẳng vuông góc với chúng tạo thành một hình chữ nhật.

Có C42 = 6 cách chọn 2 đường thẳng trong 4 đường thẳng song song thứ nhất.

Có C52 = 10 cách chọn 2 đường thẳng trong 5 đường thẳng vuông góc với các đường thẳng trên.

Vậy số hình chữ nhật được tạo thành là: 6.10 = 60 cách

8 tháng 4 2018

Trong mặt phẳng có bao nhiêu hình chữ nhật được tạo thành từ bốn đường thẳng song song với nhau và năm đường thẳng vuông góc với bốn đường thằng song song đó ?

Bài giải:

Để lập được một hình chữ nhât, phải thực hiện liên tiếp hai hành động sau đây:

Hành động 1: Chọn 22 đường thẳng (không phân biệt thứ tự) từ nhóm 44 đường thẳng song song đã cho. Số các cách để thực hiện hành động này là C24=4!2!2!=6C42=4!2!2!=6 (cách)

Hành động 2: Chọn 22 đường thẳng (không phân biệt thứ tự) từ nhóm 55 đường thẳng đã cho, vuông góc với 44 đường thẳng song song. Số các cách để thực hiện hành động này là 

                    C25=5!2!3!=10C52=5!2!3!=10 (cách).

Theo quy tắc nhân suy ra  số các cách để lập thành một hình chữ nhật từ các đường thẳng đã cho là 6.10=606.10=60 (cách).

Qua trên suy ra từ các đường thẳng đã cho có thể lập được 6060 hình chữ nhât.

23 tháng 11 2018

a, 2 đường thẳng // với nhau khi

\(\hept{\begin{cases}k+3=5-k\\2\ne3\end{cases}\Leftrightarrow k=1}\)

b, 2 đường thẳng cắt nhau khi

\(k+3\ne5-k\Leftrightarrow k\ne1\)

c, 2 đường thẳng trên ko thể trùng nhau được vì hệ số tự do 2 \(\ne\)3

24 tháng 7 2020

Hàm số y = ( k + 1) x + 3 có các hệ số a = k + 1, b = 3

Hàm số y = ( 3 – 2k ) x + 1 có các hệ số a' = 3 - 2k, b' = 1

Hai hàm số là hàm số bậc nhất nên a và a' khác 0, tức là :

\(k+1\ne0\)và \(3-2k\ne0\)hay \(k\ne-1\)và \(k\ne\frac{3}{2}\)( * )

b) Hai đường thẳng y = ( k + 1 ) x + 3 và y = ( 3 – 2k ) x + 1 là hàm số bậc nhất nên \(a\ne0\) và \(a'\ne0\) Hai đường thẳng này cắt nhau khi \(a\ne a'\) tức là :

\(\hept{\begin{cases}k+1\ne0\\3-2k\ne\\k+1\ne3-2k\end{cases}0}\Leftrightarrow\hept{\begin{cases}k\ne-1\\2k\ne\\3k\ne2\end{cases}3}\Leftrightarrow\hept{\begin{cases}k\ne-1\\k\ne\\k\ne\frac{2}{3}\end{cases}\frac{3}{2}}\)

Với \(k\ne-1 ; k\ne\frac{3}{2} ; k\ne\frac{2}{3}\)   thì đồ thị của hai hàm số trên là hai đường thẳng cắt nhau.

c) Do  \(b\ne b'\) ( vì \(3\ne1\)  ) nên hai đường thẳng không thể trùng nhau với mọi giá trị k.

24 tháng 11 2021

Điểm N đâu