Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đầu bài ta có:
\(x+y=2\Rightarrow x=2-y\)
\(x^2+y^2=10\)
\(\Rightarrow\left(2-y\right)^2+y^2=10\)
\(\Rightarrow4+y^2-4y+y^2=10\)
\(\Rightarrow2y^2-4y=6\)
\(\Rightarrow2\left(y^2-2y\right)=6\)
\(\Rightarrow y\left(y-2\right)=3\)
Mà \(\hept{\begin{cases}y-\left(y-2\right)=2\\y+\left(y-2\right)=k\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}\\y-2=\frac{k-2}{2}\end{cases}}}\)( với k là hằng số )
\(\Rightarrow y\left(y-2\right)=\frac{k+2}{2}\cdot\frac{k-2}{2}\)
\(\Rightarrow\frac{\left(k+2\right)\left(k-2\right)}{4}=3\)
\(\Rightarrow k^2-4=12\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=4;-4\)
- Nếu k = 4 thì:
\(\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}=3\\x=2-y=-1\end{cases}\Rightarrow x^3+y^3=-1+27=26}\)
- Nếu k = -4 thì:
\(\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}=-1\\x=2-y=3\end{cases}\Rightarrow x^3+y^3=27+-1=26}\)
Vậy x3 + y3 = 26
a, \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\Rightarrow10+2xy=4\Rightarrow xy=-3\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.13=26\)
vậy............
b, \(x+y=a\Rightarrow\left(x+y\right)^2=a^2\)
\(\Rightarrow x^2+2xy+y^2=a^2\)
\(\Rightarrow xy=\frac{a^2-b}{2}\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
Vậy....
Ta có:x+y = 2 <=> (x+y)^2 = 4 <=> x^2 + y^2+ 2xy = 4 (1)
mà x^2 +y^2=10. Thay vào (1) => xy= - 3
=> x^3 + y^3 = (x+y)(x^2+y^2-xy) = 1(10+3) =13
9: \(=x^2\left(x+2\right)+\left(x+2\right)=\left(x+2\right)\left(x^2+1\right)\)
10: \(=x^2\left(x+2\right)-\left(x+2\right)=\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
11: \(=x^3+5x^2-6x^2-30x+9x+45\)
\(=\left(x+5\right)\left(x^2-6x+9\right)\)
\(=\left(x+5\right)\left(x-3\right)^2\)
x2 + 6x + 4n - 2n+1 + 10 = 0
\(\Leftrightarrow\)( x2 + 6x + 9 ) + ( 4n - 2n+1 + 1 ) = 0
\(\Leftrightarrow\) ( x2 + 2.3x + 32 ) + [(2n)2 -2.2n + 1] = 0
\(\Leftrightarrow\) (x + 3)2 + (2n - 1)2 = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2^n-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\n=0\end{matrix}\right.\)
\(\Rightarrow\) x + n = -3
6. \(-2x^2+2x-4=-2\left(x^2-x+2\right)\)
\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+2\right)\)
\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{2}\le\dfrac{-7}{2}< 0\)
-> ĐPCM.
7. 8. 9 Tương tự
10. \(6x^2+15x-21\)
\(=6\left(x^2+\dfrac{15}{6}x-\dfrac{7}{2}\right)\)
\(=6\left(x^2+2.x.\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{25}{16}-\dfrac{7}{2}\right)\)
\(=6\left[\left(x+\dfrac{5}{4}\right)^2-\dfrac{81}{16}\right]\)
\(=6\left(x+\dfrac{5}{4}\right)^2-\dfrac{243}{8}\)
\(=\dfrac{243}{8}-6\left(x+\dfrac{5}{4}\right)^2\)
....
1)
-2x2+2x-4
= -2(x2 -x +2)
= -2(x2 - 2.\(\dfrac{1}{2}\).x + \(\dfrac{1}{4}\)+\(\dfrac{7}{4}\))
= -2.(x-\(\dfrac{1}{2}\))2 - \(\dfrac{7}{2}\) \(\le\) - \(\dfrac{7}{2}\) với \(\forall\) x
=> -2x2+2x-4 luôn âm
=>đpcm
2)
-2x2 +6x -8
= -2 (x2 -3x + 4)
= -2(x2 - 2.\(\dfrac{3}{2}\).x +\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\))
= -2.(x-\(\dfrac{3}{2}\))2 - \(\dfrac{7}{2}\) \(\le\) - \(\dfrac{7}{2}\) với \(\forall\) x
=> -2x2 +6x -8 luôn âm
=>đpcm
3)
-x2 + 4x -1
= - (x2 - 4x +1)
= -(x2 - 2.2.x + 4 -3)
= -(x - 2)2 +3 \(\le\) 3 với \(\forall\) x
=> -x2 + 4x -1 có thể không âm
=> sai đề
4)
-2x2 +6x -12
= -2(x2- 3x + 6)
= -2(x2 - 2.\(\dfrac{3}{2}\).x + \(\dfrac{9}{4}+\dfrac{15}{4}\))
= -2(x-\(\dfrac{3}{2}\))2 - \(\dfrac{15}{2}\) \(\le\) - \(\dfrac{15}{2}\) với \(\forall\) x
=> -2x2 +6x -12 luôn âm
=>đpcm
5)
6x2 +15x - 21
= 6(x2 + 2.\(\dfrac{15}{2}\)x + \(\dfrac{225}{4}\)- \(\dfrac{309}{4}\))
= 6.(x-\(\dfrac{15}{2}\))2 - \(\dfrac{927}{2}\) \(\ge\) - \(\dfrac{927}{2}\) với \(\forall\) x
=> 6x2 +15x - 21 có thể không âm
=> đề sai