Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 6x + 4n - 2n+1 + 10 = 0
\(\Leftrightarrow\)( x2 + 6x + 9 ) + ( 4n - 2n+1 + 1 ) = 0
\(\Leftrightarrow\) ( x2 + 2.3x + 32 ) + [(2n)2 -2.2n + 1] = 0
\(\Leftrightarrow\) (x + 3)2 + (2n - 1)2 = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2^n-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\n=0\end{matrix}\right.\)
\(\Rightarrow\) x + n = -3
a)
\(\dfrac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}\)
\(=\dfrac{x^2\left(x+1\right)-4\left(x+1\right)}{x^3+2x^2+6x^2+12x+5x+10}\)
\(=\dfrac{\left(x+1\right)\left(x^2-4\right)}{x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x^2+6x+5\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left[x\left(x+5\right)+\left(x+5\right)\right]}\)
\(=\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{x-2}{x+5}\)
b)
\(\dfrac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}\)
\(=\dfrac{x^4+3x^3+x^2+3x^3+9x^2+3x-x^2-3x-1}{x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1}\)
\(=\dfrac{x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)-\left(x^2+3x+1\right)}{x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)}\)
\(=\dfrac{\left(x^2+3x+1\right)\left(x^2+3x-1\right)}{\left(x^2+3x-1\right)\left(x^2+3x-1\right)}\)
\(=\dfrac{x^2+3x+1}{x^2+3x-1}\)
1 ) \(A=\left(\dfrac{2x^3+2}{x+1}-2x\right)\left(\dfrac{x^3-1}{x-1}+x\right)\)
\(\Leftrightarrow A=\left(\dfrac{2x^3+2-2x^2-2x}{x+1}\right)\left(x^2+2x+1\right)\)
\(\Leftrightarrow A=\left(\dfrac{\left(2x^2-2\right)\left(x-1\right)}{x+1}\right)\left(x+1\right)^2\)
\(\Leftrightarrow A=\left(\dfrac{2\left(x-1\right)\left(x+1\right)\left(x-1\right)}{x+1}\right)\left(x+1\right)^2\)
\(\Leftrightarrow A=2\left(x-1\right)^2\left(x+1\right)^2\ge0\forall x\)
1 , \(x^5+x^4+1=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
= \(x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)=\(\left(x^2+x+1\right)\left(x^3-x+1\right)\)
2 , \(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)(*)
Đặt x2 + 10 = a , a>0 (1)
=> (*) <=> a(a+24)+128=a2 + 24a+128=(a+8)(a+16) (**)
Thay (1) vào (**) ta được :
(*) <=> \(\left(x^2+10+8\right)\left(x^2+10+16\right)\)
1)
\(15x^3+29x^2-8x-12=(15x^3+30x^2)-(x^2+2x)-(6x+12)\)
\(=15x^2(x+2)-x(x+2)-6(x+2)\)
\(=(x+2)(15x^2-x-6)=(x+2)(15x^2-10x+9x-6)\)
\(=(x+2)[5x(3x-2)+3(3x-2)]\)
\(=(x+2)(3x-2)(5x+3)\)
2)
\(x^3+4x^2-29x+24=(x^3-x^2)+(5x^2-5x)-(24x-24)\)
\(=x^2(x-1)+5x(x-1)-24(x-1)\)
\(=(x-1)(x^2+5x-24)\)
\(=(x-1)(x^2-3x+8x-24)\)
\(=(x-1)[x(x-3)+8(x-3)]=(x-1)(x-3)(x+8)\)
a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5
b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4
c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:
n-2 | n |
-1 | 1 |
1 | 3 |
-3 | -1 |
3 | 5 |
Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết
a ) \(-x^2+6x-15\)
\(\Leftrightarrow-x^2+6x-9-6\)
\(\Leftrightarrow-\left(x^2-6x+9\right)-6\)
Ta có : \(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2-6\le-6\)
\(\RightarrowĐPCM.\)
b ) \(\left(x-3\right)\left(1-x\right)-2\)
\(\Leftrightarrow\left(x-x^2-3+3x\right)-2\)
\(\Leftrightarrow\left(-x^2+4x-3\right)-2\)
\(\Leftrightarrow-x^2+4x-3-2\)
\(\Leftrightarrow-x^2+4x-4-1\)
\(\Leftrightarrow-\left(x^2-4x+4\right)-1\)
\(\Leftrightarrow-\left(x-2\right)^2-1\)
Ta có : \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\le0\)
\(\Leftrightarrow-\left(x-2\right)^2-1\le-1\)
\(\LeftrightarrowĐPCM.\)
c ) \(\left(x+4\right)\left(2-x\right)-10\)
\(\Leftrightarrow\left(2x-x^2+8-4x\right)-10\)
\(\Leftrightarrow\left(-x^2-2x+8\right)-10\)
\(\Leftrightarrow-x^2-2x+8-10\)
\(\Leftrightarrow-x^2-2x-2\)
\(\Leftrightarrow-x^2-2x-1-1\)
\(\Leftrightarrow-\left(x^2+2x+1\right)-1\)
\(\Leftrightarrow-\left(x+1\right)^2-1\)
Ta có : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow-\left(x+1\right)^2\le0\)
\(\Leftrightarrow-\left(x+1\right)^2-1\le-1\)
\(\LeftrightarrowĐPCM.\)
a) \(-x^2+6x-15=-x^2+6x-9-6=-\left(x-3\right)^2-6\)
Do \(-\left(x-3\right)^2\le0\forall x\in Q\)
\(\Rightarrow......................\le0\forall x\in Q\)
Áp dụng hằng đẳng nhé mk ngại làm lắm
câu a đề có sai số mũ ko vậy
b) \(\dfrac{x^4+x^3-x-1}{x^4+x^3+2x^2+x+1}\)
\(=\dfrac{x^3\left(x+1\right)-\left(x+1\right)}{x^4+x^3+x^2+x^2+x+1}\)
\(=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2+1\right)}=\dfrac{x^2-1}{x^2+1}\)
c) \(\dfrac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}\)
\(=\dfrac{\left(x^2+3x\right)^2-1}{x^4+6x^3+9x^2-2x^2-6x+1}\)
\(=\dfrac{\left(x^2+3x-1\right)\left(x^2+3x+1\right)}{\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1}\)
\(=\dfrac{\left(x^2+3x-1\right)\left(x^2+3x+1\right)}{\left(x^2+3x-1\right)^2}=\dfrac{x^2+3x+1}{x^2-3x+1}\)