Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}=\frac{\left(a^2-4\right)\left(a^2+4\right)}{a^4-4a^3+4a^2+4a^2-16a+16}=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)
\(=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}=\frac{a+2}{a-2}=\frac{a-2+4}{a-2}=1+\frac{4}{a-2}\)
Để \(M\in Z\Leftrightarrow a-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng:
a - 2 | 1 | -1 | 2 | -2 | 4 | -4 |
a | 3 | 1 | 4 | 0 | 6 | -2 |
Vậy...
M = \(\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)
=> M = \(\frac{\left(a^2+4\right)\left(a^2-4\right)}{\left(a^4-4a^3+4a^2\right)+\left(4a^2-16a+16\right)}\)
M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)
M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a^2-4a+4\right)}\)
M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}\)
M = \(\frac{a+2}{a-2}\)
A = (a^2+4).(a^2-4)/(a^4+4a^2)-(4a^3+16a)+(4a^2+16)
= (a^2+4).(a^2-4)/(a^2+4).(a^2-4a+4)
= (a^2+4).(a-2).(a+2)/(a^2+4).(a-2)^2
= a+2/a-2
Tk mk nha
â) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(=\left(\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}\right)=\left(\frac{x^2+16}{x^2-16}\right):\frac{x^2+16}{x+2}\)
\(=\frac{x+2}{x^2-16}\left(đpcm\right)\)
a) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(A=\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2-4x+4x+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x+2}{x^2-16}\left(đpcm\right)\)
chiều dài tấm vải chính bằng tổng số mét vải đã bán (vì ở đề bài nói rằng ngày 3 bán nốt 40m)
a)\(a^4+16\ge2a^3+8a\)
\(\Leftrightarrow a^4-2a^3-8a+16\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(\left(a+1\right)^2+3\right)\ge0\)*Luôn đúng*
\("="\Leftrightarrow a=2\)
b)Cô si: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
Nhân theo vế 2 BĐT trên ta đc ĐPCM
\("="\Leftrightarrow a=b\)
a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)
\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)
b,
Để M = \(\frac{1}{3}\)
\(\Rightarrow x-4=3x+12\)
\(\Rightarrow2x=16\Leftrightarrow x=8\)
\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)
\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)
\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)
Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .