Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé
a) Tam giác ABM và tam giác CDM có:
AM=CM ( M là trung điểm của AC)
MD=MB(gt)
góc AMB=góc DMC ( đối đỉnh)
Suy ra tam giác ABM = tam giác CDM (c-g-c)
b)Vì tam giác ABM = tam giác CDM ( chứng minh ở câu a)
Suy ra góc CDM= góc MBA (hai góc tương ứng)
Mà hai góc CDM và MBA la hai góc so le trong
Vậy AB // CD
c)Vì AK vuông góc với BD
CH vuông góc với BD
Suy ra AK // CH ( từ vuông góc đến song song)
Suy ra góc HCM=góc KAM ( hai góc so le trong)
Tam giác CKM= tam giác AHM(g-c-g)
Suy ra KM=HM(hai cạnh tương ứng)
Ta có K nằm giữa M và K
nên Bk+KM=BM (1)
Ta có H nằm giữa M và D
nên MH+HD=MD (2)
mà BM=MD( hai cạnh tương ứng của tam giác ABM và tam giác CDM) (3)
Từ (1),(2) và (3) suy ra BK=DH
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
b: ta có: ABCD là hình bình hành
nên CD//AB
hay CD\(\perp\)AC
c: Xét tứ giác ABNC có
AB//NC
NB//AC
Do đó: ABNC là hình bình hành
SUy ra: CN=AB
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó: ΔABM=ΔCNM
câu a hơi kì nhỉ , theo mk thì phải là tam giác ABM = tam giác DCM chứ
a) Xét \(\Delta ABM\) và \(\Delta DCM\)có :
AM=DM ( gt )
BM=MC ( gt )
\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )
do đó \(\Delta ABM\) = \(\Delta DCM\) ( c.g.c )
b) Vì \(\Delta ABM=\Delta DCM\)( c/m trên )
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong
nên AB // BC
a. Xét tam giác ABM và tam giác DCM có:
+, BM = MC ( AM là đường trung tuyến của tam giác ABC )
+, Góc AMB = góc DMC ( 2 góc đối đỉnh )
+, AM = MD ( gt )
=> tam giác ABM = tam giác DCM ( c.g.c )
=> AB = CD ( 2 cạnh tương ứng )
=> góc BAM = góc CDM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AB // CD ( đpcm )