K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

Hình bài 2

13 tháng 8 2020

Hình bài 4

Đề bài chắc chắn sai, nhìn vào hình là thấy các vecto đó không bằng nhau

18 tháng 8 2019

\(\overrightarrow{a}=1\Rightarrow3\overrightarrow{a}=3\)

\(\overrightarrow{b}=2\Rightarrow4\overrightarrow{b}=8\)

\(\overrightarrow{c}=3\overrightarrow{a}+4\overrightarrow{b}=\sqrt{3^2+8^2-2\cdot3\cdot8\cdot\cos\left(60\right)}=7\)

11 tháng 12 2020

u(1/2;-5).    v(k;-4)

1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó? 2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó? 3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB Chứng minh \(\overrightarrow{BC'}\)...
Đọc tiếp

1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?

2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?

3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB

Chứng minh \(\overrightarrow{BC'}\) =\(\overrightarrow{C'A}\) =\(\overrightarrow{A'B'}\)

4. Cho vecto \(\overrightarrow{AB}\)và một điểm C. Hãy dựng điểm D sao cho \(\overrightarrow{AB}\) =\(\overrightarrow{CD}\)

5. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh \(\overrightarrow{MP}\) =\(\overrightarrow{QN}\) , \(\overrightarrow{MQ}\)=\(\overrightarrow{PN}\)

6. Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh rằng

(1) \(\overrightarrow{AB}\) -\(\overrightarrow{BC}\) =\(\overrightarrow{DB}\) , | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= AC

(2) Nếu | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= | \(\overrightarrow{CB}\) - \(\overrightarrow{CD}\) | thì ABCD là hình chữ nhật

7. Cho tam giác ABC đều có độ dài cạnh là a. Tính độ dài các vecto \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\) , \(\overrightarrow{AB}\) - \(\overrightarrow{BC}\)

0
AH
Akai Haruma
Giáo viên
15 tháng 7 2017

Lời giải:

Vector cùng phương \(\overrightarrow{AB}\)\(\overrightarrow{DC}\)

a)

- Áp dụng định lý Pitago:

\(AC=\sqrt{AD^2+DC^2}=\sqrt{10}a\) \(\Rightarrow |\overrightarrow{AC}|=\sqrt{10}a\)

\(BC=\sqrt{BM^2+MC^2}=\sqrt{AD^2+(DC-AB)^2}=\sqrt{2}a\)\(\Rightarrow |\overrightarrow{BC}|=\sqrt{2}a\)

- \(|\overrightarrow{BM}|=|\overrightarrow {AD}|=a\)

- Áp dụng định lý Pitago cho tam giác $ADM$:

\(AM=\sqrt{AD^2+DM^2}=\sqrt{AD^2+AB^2}=\sqrt{5}a\Rightarrow |\overrightarrow{AM}|=\sqrt{5}a\)

b)

Lấy \(T\) đối xứng với \(B\) qua \(M\). Khi đó \(AMTD,BDTC\) là hình bình hành. Theo quy tắc hình bình hành:

\(2\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AD}+(\overrightarrow{AD}+\overrightarrow{AB})=\overrightarrow{AD}+\overrightarrow{AM}=\overrightarrow{AT}\)

\(\overrightarrow{BD}+\overrightarrow{BC}=\overrightarrow{BT}\)

NV
3 tháng 11 2019

\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\Rightarrow\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{v}-\overrightarrow{u}\)

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\frac{3}{4}\overrightarrow{BC}=\overrightarrow{u}+\frac{3}{4}\left(\overrightarrow{v}-\overrightarrow{u}\right)=\frac{1}{4}\overrightarrow{u}+\frac{3}{4}\overrightarrow{v}\)