K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 1 2019

\(M=0\Leftrightarrow2x^2+y^2+5+2xy-6x-4y=0\)

\(\Leftrightarrow x^2+y^2+4+2xy-4x-4y+x^2-2x+1=0\)

\(\Leftrightarrow\left(x+y-2\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

\(\Rightarrow N=\left(2-1\right)^{2018}+\left|1-1\right|^{2019}-\left(1-1\right)^{2020}=1\)

3 tháng 8 2019

ta có x^2 + 2y^2 +z^2 -2xy -2y -4z +5 =0

=> (x^2 - 2xy +y^2) + (y^2 -2y +1) + (z^2 -4z +4) =0

=> (x-y)^2 + (y-1)^2 +(z-2)^2 =0

=> x=y , y=1 , z=2 

=> A= (1-1)^2018 + (1-1)^2019 + ( 2-1)^2020 => A= 1

nghĩ thế !

6 tháng 12 2018

\(2x^2+y^2+z^2-2xy-2x+1=0\)

\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+z^2=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2=0\)

\(\Leftrightarrow x=y=1;=0\)

\(A=x^{2018}+y^{2019}+z^{2020}=1+1+0=2\)

2)

\(a+b+c=6\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=36\)

\(\Leftrightarrow12+2\left(ab+bc+ac\right)=36\Leftrightarrow ab+bc+ac=12\)

Kết hợp với \(a^2+b^2+c^2=12\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

Kết hợp với \(a+b+c=6\Leftrightarrow a=b=c=2\)

\(P=\left(a-3\right)^{2019}+\left(b-3\right)^{2019}+\left(c-3\right)^{2019}=\left(-1\right)^{2019}+\left(-1\right)^{2019}+\left(-1\right)^{2019}=-3\)

Sửa đề: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1+z^2-4z+4=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)

=>x=y=1 và z=2

\(A=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}\)

\(=\left(1-1\right)^{2018}+\left(1-1\right)^{2019}+\left(2-1\right)^{2020}\)

=1

22 tháng 6 2016

Câu hỏi của đỗ thuan - Toán lớp 8 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 1:

\(x^2+y^2-2x-4y+5=0\)

\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)

Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$

$\Rightarrow x=1; y=2$

Vậy...........

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 2:

Ta có:

\(a(a-b)+b(b-c)+c(c-a)=0\)

\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)

\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

Lập luận tương tự bài 1, ta suy ra :

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Khi đó, thay $b=c=a$ ta có:

\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)

\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)

\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)

Vậy $P_{\min}=\frac{17}{4}$

Giá trị này đạt được tại $b=c=a=\frac{1}{2}$

29 tháng 6 2019

a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)

\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )

c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )

29 tháng 6 2019

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

29 tháng 6 2019

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1

18 tháng 7 2019

2 .tìm x

a , x ( x + 2 ) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

b, x ( x-5 )= 5 -x

<=> x ( x-5 ) + x - 5 = 0

<=> x (x-5) + ( x-5)= 0

<=> (x-5)(x+1 )=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

c) ( x + 1 ) ( 6x2 + 2x ) + ( x - 1 ) ( 6x2 + 2x ) = 0

\(\Leftrightarrow\) ( 6x2 + 2x ) \([\)(x+1)(x-1)\(]\)=0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x\left(3x+1\right)=0\\x^{2^{ }}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\3x+1=0\\x^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\frac{-1}{3}\\x=1\end{matrix}\right.\)

18 tháng 7 2019

1 ,a) 2a ( x - y ) - ( y - x ) = 2ax - 2ay - y + x

= x ( 2a + 1 ) - y ( 2a + 1 )

= ( 2a + 1 ) ( x - y )

b) a2 ( x - y ) - ( y - x ) = a2x - a2y - y + x

= x ( a2+ 1 ) - y ( a2 +1 )

= ( a2+1 ) - (x-y )

c) x ( x - y ) + y ( y - x ) - 3 ( x - y ) = x 2 - xy -+ y 2 - xy - 3x + 3y

= x2 - 2xy + y2 -3x + 3y

= (x-y)2 -3 ( x - y )

= ( x-y ) ( x-y+3)