Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)
\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)
\(M=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\) với mọi x
=>GTNN của M là 1
Dấu "=" xảy ra <=> x+1=0<=>x=-1
1)
Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y
=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)
Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0 <=> x = -3 và y = -1
=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5 tại x = -3 và y = -1
=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1
2) \(M=2x^4+3x^2y^2+y^4+y^2\)
\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
\(A=3\left(x-3\right)^2+\left(y-1\right)^2+2005\)
Nhận xét: \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow3\left(x-3\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow3\left(x-3\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow3\left(x-3\right)^2+\left(y-1\right)^2+2005\ge2005\forall x,y\)
Vậy \(minA=2005\)khi \(3\left(x-3\right)^2=0\)\(\Rightarrow x-3=0\)\(\Rightarrow x=3\)
\(\left(y-1\right)^2=0\)\(\Rightarrow y-1=0\)\(\Rightarrow y=1\)
KL: Vậy \(minA=2005\) khi \(x=3;y=1\)
\(B=\left(x^2-9\right)^2+|y-2|-1\)
Nhận xét: \(\left(x^2-9\right)^2\ge0\forall x\)
\(|y-2|\ge0\forall y\)
\(\Rightarrow\left(x^2-9\right)^2+|y-2|\ge0\forall x,y\)
\(\Rightarrow\left(x^2-9\right)^2+|y-2|-1\ge-1\forall x,y\)
Vậy \(minB=-1\)khi \(\left(x^2-9\right)^2=0\)\(\Rightarrow x^2-9=0\)\(\Rightarrow x^2=9\)\(\Rightarrow x=3\)
\(|y-2|=0\)\(\Rightarrow y=2\)
KL: Vậy \(minB=-1\) khi \(x=3;y=2\)
\(C=x^2-2x+5\)
\(\Rightarrow C=x^2-2x+1+4\)
\(\Rightarrow C=\left(x-1\right)^2+4\)
Nhận xét: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)
Vậy \(minB=4\) khi \(\left(x-1\right)^2=0\)\(\Rightarrow x-1=0\)\(\Rightarrow x=1\)
KL: Vậy \(minB=4\) khi \(x=1\)
1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)
Vậy đề sai ~v (hay là tui làm sai ta)
M=(x^2+2x+1)+2|y-1|-3/2
M=(x+1)^2+2|y-1| -3/2
Vì (x+1)^2>=0 ; 2|y-1|>=0 => M>=-3/2
Dấu = xảy ra <=> x+1=0 và y-1=0<=> x=-1 và y=1
Vậy GTNN M=-3/2 tại x=-1 và y=1
Học tốt
\(M=x^2+2x+2\left|y-1\right|-\frac{1}{2}\)
\(\Rightarrow M=\left(x^2+2.x.1+1^2\right)+2\left|y-1\right|-1-\frac{1}{2}\)(hằng đẳng thức)
\(\Rightarrow M=\left(x+1\right)^2+2\left|y-1\right|-\frac{3}{2}\)
Thấy \(\left|y-1\right|\ge0\forall y\)
\(\Rightarrow2\left|y-1\right|\ge0\forall y\)(1)
Lại thấy: \(\left(x+1\right)^2\ge0\forall x\)(2)
Từ (1)(2)\(\Rightarrow\left(x+1\right)^2+2\left|y+1\right|\ge0\forall x;y\)
\(\Rightarrow\left(x+1\right)^2+2\left|y+1\right|-\frac{3}{2}\ge\frac{-3}{2}\forall x;y\)
hay \(M\ge\frac{-3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\2\left|y-1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x+1=0\\\left|y-1\right|=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Khi đó Mmin=\(\frac{-3}{2}\)
Vậy Mmin=\(\frac{-3}{2}\)tại x=-1;y=1