Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
a) Ta có: \(\dfrac{4}{x}+\dfrac{y}{3}=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{5}{6}-\dfrac{y}{3}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{5-2y}{6}\)
\(\Rightarrow\left(5-2y\right)x=24\)
Vì \(x,y\in Z\Rightarrow\left[{}\begin{matrix}5-2y\in Z\\x\in Z\end{matrix}\right.\)
\(\Rightarrow5-2y\inƯ\left(24\right);x\inƯ\left(24\right)\)
Tự lập bảng xét các giá trị của \(x,y\) nhé.
b) Lại có: \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{6}+\dfrac{y}{3}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1+2y}{6}\)
\(\Rightarrow\left(1+2y\right)x=30\)
Lí luận rồi lập bảng như câu \(a\)).
c) \(\dfrac{x}{6}-\dfrac{2}{y}=\dfrac{1}{30}\)
\(\Rightarrow\dfrac{2}{y}=\dfrac{x}{6}-\dfrac{1}{30}\)
\(\Rightarrow\dfrac{2}{y}=\dfrac{5x-1}{30}\)
\(\Rightarrow\left(5x-1\right)y=60\)
\(......Tương\) \(tự\) \(như\) \(câu\) \(a\))\(b\)).
a) \(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\)
\(\dfrac{4}{y}\) = \(\dfrac{x}{3}-\dfrac{1}{5}\)
\(\dfrac{4}{y}\) = \(\dfrac{5x-3}{15}\)
=> 4.15 = y.(5x-3)
60 = y.(5x-3)
Ta có bảng
5x-3 | 1 | 60 | 2 | 30 | 3 | 20 | 4 | 15 | 5 | 12 | 6 | 10 |
y | 60 | 1 | 30 | 2 | 20 | 3 | 15 | 4 | 12 | 5 | 10 | 6 |
x | 4/5 | 63/5 | 1 | 33/5 | 6/5 | 23/5 | 7/5 | 18/5 | 8/5 | 3 | 9/5 | 13/5 |
L | L | TM | L | L | L | L | L | L | TM | L | L |
Vậy y=30 và x=1 ; y=5 và x=3
a,\(\dfrac{x}{3}-\dfrac{1}{y}=\dfrac{1}{2}\)
=> \(\dfrac{1}{y}=\dfrac{x}{3}-\dfrac{1}{2}=>\dfrac{1}{y}=\dfrac{2x-3}{6}\)
=> y(2x-3)=6.1=6
=> y và 2x-3 là Ư (6)= {+-1,+-2,+-3,+-6}
2x-3 | -1 | 1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 2 | 2,5 | 1/2 | 3 | 0 | 9/2 | -3/2 |
y | -6 | 6 | 3 | -3 | 2 | -2 | 1 |
-1 |
vậy (x;y)= .......................
b,c làm tương tự
chúc bn học tốt
Ta có : M . N = \(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\)
= \(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{100}{101}\)
= \(\dfrac{1}{101}\)
Vậy M . N = \(\dfrac{1}{101}\)
a, (x + 1) + (x + 4) + ... + (x + 28) = 155
x + 1 + x + 4 + ... + x + 28 = 155
(x + x + x + ... + x) + (1 + 4 + ... + 28) = 155
x . 10 + 145 = 155
x . 10 = 155 - 145
x . 10 = 10
x = 10 : 10
x = 1
\(A=\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
\(B=\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{110}\)
\(=\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{10.11}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=\dfrac{1}{4}-\dfrac{1}{11}\)
\(=\dfrac{7}{44}\)
\(M=\dfrac{6}{10.13}+\dfrac{6}{13.16}+\dfrac{6}{16.19}+\dfrac{6}{19.21}\)
\(\dfrac{1}{2}M=\dfrac{3}{10.13}+\dfrac{3}{13.16}+\dfrac{3}{16.19}+\dfrac{3}{19.21}\)
\(\dfrac{1}{6}M=\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{21}\)
\(\dfrac{1}{6}M=\dfrac{1}{10}-\dfrac{1}{21}\)
\(M=\dfrac{11}{210}:\dfrac{1}{6}=\dfrac{11}{35}\)
\(N=\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{30}\)
\(=\dfrac{1}{20}-\dfrac{1}{30}\)
\(=\dfrac{1}{60}\)
\(\dfrac{M}{N}=\dfrac{11}{35}:\dfrac{1}{60}=\dfrac{132}{7}\)= \(\dfrac{132}{25}\)