K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

a)\(M=5+5^2+5^3+5^4+...+5^{79}+5^{80}\)(có 80 số hạng)

\(M=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)(có 40 nhóm)

\(M=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)

\(M=5\cdot6+5^3\cdot6+...+5^{79}\cdot6\)

\(M=6\left(5+5^3+...+5^{79}\right)⋮6\)

1 tháng 9 2016

a) M = 5 + 52 + 53 + ... + 580 (có 80 số hạng; 80 chia hết cho 2)

M = (5 + 52) + (5+ 54) + ... + (579 + 580)

M = 5.(1 + 5) + 53.(1 + 5) + ... + 579.(1 + 5)

M = 5.6 + 53.6 + ... + 579.6

M = 6.(5 + 53 + ... + 579) chia hết cho 6

Chứng tỏ M chia hết cho 6

b) Ta thấy các lũy thừa của 5 từ 52 trở đi đều chia hết cho 5 và 25

=> 52; 53; ...; 580 đều chia hết cho 5 và 25

Mà 5 chia hết cho 5 nhưng không chia hết cho 25

=> M chia hết cho 25 nhưng không chia hết cho 25, không phải số chính phương

Chứng tỏ M không phải số chính phương

1 tháng 9 2016

a. Ta có: M = 5 + 52 + 53 + ...+ 580

= 5 + 52 + 5+ ... + 580 = (5 + 52) + (53 + 54) + (55 + 56) + ... + (579 + 580)

= (5 + 52) + 52 . (5 + 52) + ... + 578(5 + 52)

= 30 + 30 . 52 + 30 . 54 + ... + 30 . 578 = 30(1 + 52 + 54 + ... + 578)  chia hết cho 30

b. Ta thấy : M = 5 + 52 + 53 + ... + 580 cchia hết cho số nguyên tố 5

Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)

=> M = 5 + 52 + 53 + ... + 580  không chia hết cho 52 (do 5 không chia hết cho 52)

=> M chia hết cho 5 nhưng không chia hết cho 52

=> M không phải số chính phương

19 tháng 3 2018

a) M= 5+5^2+5^3+.....+5^80

M=5^1×1+5^1×5+5^3×1+5^3×5+...+5^79×1+5^79×5

M=5^1×(1+5)+5^3×(1+5)+...+5^79×(1+5)

M=5^1×6+5^3×6+...5^79×6

M=6×(5^1+5^3+...+5^79

Có 6 chia hết cho 6 nênM chia hết cho 6

b)M không là số chính phương vì có 6 chia hết cho 6 nhưng không chia hết cho 36 nên M không là số chính phương

19 tháng 3 2018

a) M= (5+52+53+54)+...+(577+578+579+580)

M=5(1+5+52+53)+...+577(1+5+52+53)

M=5*156+...+577*156

M=5*(26*6)+...+577*(26*6)

Vậy M chia hết cho 6

b) Tôi không biết thông cảm nhé

5 tháng 11 2015

 

tính 2A rồi trừ A, sau đó vận dụng kiến thức về chữ số tận cùng của số chính phương, suy ra đpcm

câu sau tương tự, tính 3B 

NM
29 tháng 12 2020

giả sử

tồn tại số tự nhiên a sao cho 

\(1+5^m+8^m=a^2\)

với m=0 vế trái bằng 3 (vô lí)

với m khác 0 , rõ ràng vế trái là một số chẵn , do đó a phải là số chẵn .

do đó vế phải chia hết cho 4

suy ra \(1+5^m+8^m⋮4\Leftrightarrow1+5^m⋮4\)

điều này vô lý vì \(5^m\) chia 4 dư 1 với mọi m, do đó \(1+5^m\)không thể chia hết cho 4

do đó số ban đầu không thể là số chính phương

12 tháng 11 2016

a, Vì 5 .....5100 chia hết cho 5 => A là hợp số

b,Vì 52......5100 chia hết cho 52 nhưng 5 không chia hết cho 52 => A không phải là số chính phương

12 tháng 11 2016

Dễ