K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

không biết làm sao đây?

31 tháng 5 2017

mình mới lớp 4.

31 tháng 1 2022

tính : \(BC=5.AH=\dfrac{12}{5}\)

+ gọi K là tâm của đường tròn ngoại tiếp ΔBMN .Khi đó , KI là đường trung trực của đoạn MN

Do 2 ΔAID và AOH đồng dạng nên => góc ADI = góc AOH = 90\(^o\)

=> OA ⊥ MN

do vậy : KI//OA

+ do tứ giác BMNC nội tiếp nên OK⊥BC . Do đó AH// KO

+ dẫn đến tứ giác AOKI là hình bình hành.

Bán kính:

\(R=KB=\sqrt{KO^2+OB^2}=\sqrt{AI^2+\dfrac{1}{4}BC^2}=\sqrt{\dfrac{1}{4}AH^2+\dfrac{1}{4}BC^2=\sqrt{\dfrac{769}{10}}}\)

31 tháng 1 2022

thank

30 tháng 12 2017

chưa học chưa biết 

éo biết

18 tháng 12 2018

A B C O K N M x

Gọi Mx là tia đối của tia MA.

+) Ta có: Tứ giác AMBC nội tiếp có góc ngoài là ^BMx => ^BMx = ^ACB (1)

Tứ giác AKNC nội tiếp có góc ngoài là ^BKN => ^BKN = ^ACB

Xét đường tròn (BKN): ^BKN = ^BMN (2 góc nội tiếp cùng chắn cung BN) => ^BMN = ^ACB (2)

Từ (1) và (2) => ^BMx = ^BMN => MB là tia phân giác của ^NMx (*)

+) Xét đường tròn (O) có: ^ACN = ^ACB = 1/2.Sđ(AN = 1/2.^AON

Mà ^ACB = ^BMN = 1/2.^NMx (cmt) nên ^AON = ^NMx => Tứ giác AONM nội tiếp

Xét đường tròn (AONM): OA=ON => (OA = (ON => ^AMO = ^NMO = 1/2.AMN

=> MO là tia phân giác của ^AMN (**)

+) Từ (*) và (**) kết hợp với ^AMN + ^NMx = 1800 suy ra: ^OMB = 900 (đpcm).

a: góc APB=1/2*sđcung AB=90 độ

góc NQB=góc NPB=90 độ

=>QBNP nội tiếp

góc AQM+góc APM=180 độ

=>AQPM nội tiếp

21 tháng 3 2023

b) Đường thẳng OP là tiếp tuyến của đường tròn ngoại tiếp tam giác MNP.

( Giúp mình ý b dc k ạ)