K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
29 tháng 11 2018
Đáp án D
Ta có diện tích đáy S đ = 4 3 a 2
Chiều cao:
Suy ra thể tích hình lăng trụ là:
=> Chọn phương án D.
CM
21 tháng 5 2018
Đáp án B
Gọi M là trung điểm BC
Vì các cạnh AA’ = A’B = A’C
=> Hình chiếu của A’ trên (ABC) là tâm đường tròn ngoại tiếp ∆ABC
=> A’M ⊥ (ABC)
Xét ∆A’BC, ta có A'M = a 3
Xét ∆ABC, ta có: AB = AC = a 2
Vậy
Vì hình chóp A’.ABC có A'A = A'B = A'C và đáy ABC là tam giác đều nên hình chóp A’.ABC đều.
Gọi F là hình chiếu của A’ trên (ABC) nên F là tâm của đáy ABC là tam giác đều do đó F cũng là trọng tâm của tam giác ABC.
Gọi AF cắt BC tại D
Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)
Mà F là trọng tâm nên \(AF = \frac{2}{3}AD = \frac{{a\sqrt 3 }}{3}\)
Xét tam giác A’AF vuông tại F có
\(A'F = \sqrt {A'{A^2} - A{F^2}} = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{3}} \)
Diện tích tam giác đều ABC là \(S = \frac{{{a^2}\sqrt 3 }}{4}\)
Thể tích khối lăng trụ là \(V = A'F.S = \sqrt {{b^2} - \frac{{{a^2}}}{3}} .\frac{{{a^2}\sqrt 3 }}{4}\)