Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình vuông (giả thiết).
\(\Rightarrow AB=BC=CD=DA\)(tính chất)
Và \(AB//CD\)(tính chất) \(\Rightarrow AB//DF\).
Và \(AD//CE\)(tính chất) \(\Rightarrow CE//AD\)
\(AB//DF\)(chứng minh trên)
\(\frac{AB}{AE}=\frac{FC}{FE}\)(hệ quả của định lí Ta-lét)
\(\Rightarrow\frac{AD}{AE}=\frac{FC}{FE}\)(vì \(AB=AD\))
\(\Rightarrow\frac{AD^2}{AE^2}=\frac{FC^2}{FE^2}\left(1\right)\)
Vì \(AB//CF\)(giả thiết)
\(\Rightarrow\frac{BE}{CE}=\frac{AE}{FE}\)(hệ quả của định lí Ta-lét) (2)
\(\Rightarrow\frac{BE}{CE+BE}=\frac{AE}{FE+AE}\)(tính chất của tỉ lệ thức)
\(\Rightarrow\frac{BE}{BC}=\frac{AE}{AF}\)\(\Rightarrow\frac{BE}{AD}=\frac{AE}{AF}\)(vì \(AD=BC\))
\(\Rightarrow\frac{AD}{AF}=\frac{BE}{AE}\)(tính chất của tỉ lệ thức)
Từ (2) \(\Rightarrow\frac{BE}{AE}=\frac{CE}{FE}\)(tính chất của tỉ lệ thức)
Do đó \(\frac{AD}{AF}=\frac{CE}{FE}\Rightarrow\frac{AD^2}{AF^2}=\frac{CE^2}{FE^2}\left(3\right)\)
Từ (1) và (3)
\(\Rightarrow\frac{AD^2}{AE^2}+\frac{AD^2}{AF^2}=\frac{FC^2}{FE^2}+\frac{CE^2}{FE^2}\)
\(\Rightarrow AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FC^2+CE^2}{FE^2}\)
Vì ABCD là hình vuông (giả thiết)
\(\Rightarrow BC\perp CD\)(tính chất)\(\Rightarrow EC\perp DF\)
Do đó \(\Delta CEF\)vuông tại C.
\(\Rightarrow CE^2+CF^2=EF^2\)(định lí Py-ta-go)
Do đó: \(AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FE^2}{FE^2}=1\)
\(\Rightarrow\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AD^2}\)(điều phải chứng minh).
I don't now
...............
.................
từ A kẻ đường thắng vuông góc AF cắt BC tại K
ta có góc BAK = góc DAF ( cùng phụ vs góc BAE)
Xét tam giác BKA và tam giác DFA có
góc ADF= góc ABK ( =90 độ )
AB=AD
góc BAK = góc DAF
=> tam giác BKA và DFA là 2 tam giác = nhau
=> AK=AF ( các cạnh tương ứng )
tam giác AEK vuông tại A có đường cao AB
=> \(\frac{1}{AB^2}=\frac{1}{AK^2}+\frac{1}{AE^2}\)( hệ thức lượng trong tam giác vuông )
=>\(\frac{1}{AB^2}=\frac{1}{AF^2}+\frac{1}{AE^2}\)( đpcm)
kẻ đường thẳng vuông góc vs AE tại A , cắt CD tại M .
Xét tam giác MAF VUÔNG tại A , áp dụng hệ thức lượng ta đc . 1/ AD ^2 = 1/ AM^2 + 1/ AF ^2 (1)
Xét tam giác AMD và tam giác AEB có góc B = góc D = 90 độ ; góc MAD = góc BAE ( 2 góc phụ nhau ) ; AD =AB (GT)
Suy ra tam giác AMD = tam giác AEB
suy ra AE = AM (2)
TỪ (1) và(2) suy ra 1/AB^2 = 1/AE^2 + 1/AF^2
Tích giùm mk nha
chỉnh lại câu 1 tí:
1)
+ Xét tứ giác AEFD : ADF +AEF = 90 +90 = 180
Suy ra: Tứ giác AEFD nội tiếp được đường tròn
Suy ra: EAF = EDF hay EAF = EDC
+ Xét tgAEF và tg EDC : AEF = ECD = 90 VÀ EAF = EDC
Suy ra: tgAEF ~ tgDCE => .AE /AF = CD/DE
2.
Tứ giác AEFD nội tiếp được đường tròn
=> EAF = EDF mặt khác EAF = EDC mặt khác : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG suy ra tứ giác AEGH nội tiếp được đường tròn => HGE = 90
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.
3.
Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
+ Xét tam giác HGE : và OH = OE = 1/2. HE => OH = OE = OG.
+ Xét tg OEK và tg OGK :
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra tgOEK =tg OGK (c – c – c) => KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).