K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

a) + ΔABM = ΔADN ( g.c.g )

=> AM = AN

b) + ΔANI vuông tại A, đg cao AD

\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AN^2}+\frac{1}{AI^2}\) ( theo hệ thức lượng trog Δ vuông )

\(\Rightarrow\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AI^2}\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2019

Lời giải:
a)

Xét tam giác $AND$ và $AMB$ có:

\(\widehat{ADN}=\widehat{ABM}=90^0\)

\(\widehat{DAN}=\widehat{BAM}(=90^0-\widehat{DAM})\)

\(\Rightarrow \triangle AND\sim \triangle AMB(g.g)\Rightarrow \frac{AN}{AM}=\frac{AD}{AB}=1\) (do $ABCD$ là hình vuông nên $AB=AD$)

\(\Rightarrow AM=AN\) (đpcm)

b)

Ta thấy $MC\parallel AD$ nên áp dụng định lý Ta-let:

\(\frac{AM}{AI}=\frac{CD}{DI}\Rightarrow AM=\frac{AI.CD}{DI}\)

Từ đây kết hợp với điều kiện $AB=AD=CD$ và định lý Pitago ta có:

\(\Rightarrow \frac{1}{AM^2}+\frac{1}{AI^2}=\frac{DI^2}{AI^2.CD^2}+\frac{1}{AI^2}=\frac{DI^2+CD^2}{AI^2.CD^2}=\frac{DI^2+AD^2}{AI^2.AB^2}=\frac{AI^2}{AI^2.AB^2}=\frac{1}{AB^2}\) (đpcm)

a: Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

góc BAM=góc DAN

=>ΔABM=ΔADN

=>AM=AN

=>ΔAMN vuông cân tại A

b: 1/AM^2+1/AE^2

=1/AN^2+1/AE^2

=1/AD^2 ko đổi

9 tháng 9 2018

Hình bạn tự vẽ nha.

a, ABCD là hình vuông \(\Rightarrow AB=BC=CD=AD\)

Ta có: \(\hat{IAD}+\hat{DAE}=90^o\)

\(\hat{BAE}+\hat{DAE}=90^o\)

\(\Rightarrow \hat{IAD} =\hat{BAE}\)

Xét \(\Delta ADI\)\(\Delta ABE\) có:

\(\hat{ADI}=\hat{ABE}=90^o\)

\(AD=AB\left(cmt\right)\)

\(\hat{IAD}=\hat{BAE}(cmt)\)

\(\Rightarrow\Delta ADI=\Delta ABE\left(g-c-g\right)\Rightarrow AI=AE\)

b, \(\Delta AIK\) có: \(\hat{IAK}=90^o\), \(AD\perp IK\)

\(\Rightarrow AD.IK=AI.AK\) (hệ thức lượng trong tam giác vuông) mà \(AI=AE\left(cmt\right)\Rightarrow AD.IK=AE.AK\)

c, \(\Delta AIK\) có: \(\hat{IAK}=90^o\), \(AD\perp IK\)

\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\)(hệ thức lượng trong tam giác vuông) mà \(AI=AE\left(cmt\right)\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) mà hình vuông ABCD không đổi \(\Rightarrow\) AD không đổi\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi

Vậy \(\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi khi E thay đổi trên cạnh BC

Hai câu cuối í ẹ chưa nghĩ ra, để sau.

12 tháng 9 2018

Thanks

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

15 tháng 11 2018

số số hạng là :

có số cặp là :

50 : 2 = 25 cặp 

mỗi cặp có giá trị là :

99 - 97 = 2

tổng dãy trên là :

25 x 2 = 50

21 tháng 8 2019

Goi giao diem cua tia AE va DN la G

a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)

\(\widehat{G}+\widehat{ANG}=90^0\)

\(\widehat{AME}+\widehat{AEM}=90^0\)

\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)

Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)

Suy ra:\(AN=AE\)(2 canh tuong ung)

b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)

\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)