K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Goi giao diem cua tia AE va DN la G

a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)

\(\widehat{G}+\widehat{ANG}=90^0\)

\(\widehat{AME}+\widehat{AEM}=90^0\)

\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)

Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)

Suy ra:\(AN=AE\)(2 canh tuong ung)

b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)

\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)

a: góc BHD=góc BAD=góc BCD=90 độ

=>A,B,H,D,C cùng nằm trên đường tròn đường kính BD

=>AHCD nội tiếp

Tâm là trung điểm của BD

b: Xét ΔBDK có

BC,DH là đường cao

BC cắt DH tại M

=>M là trực tâm

=>KM vuông góc DB

26 tháng 8 2018

Ai giúp mình với ạ có link càng tốt

31 tháng 7 2017

làm tương tự

Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo AC và BD, M là trung điểm của OB, N là trung điểm của CD. 
a, Chứng minh: +góc AMN vuông. 
+A, M, N, D cùng thuộc một đường tròn, xác định tâm của nó. 
+ AN>MD 
b, Trên AB, AD thứ tự lấy I, K sao AI=Ak. Kẻ AP vuông góc DI, cắt BC tại Q. Chứng minh 5 điểm C, D, K, P, Q cùng nằm trên một đường tròn

Bài làm 

Từ M hạ ME vuông góc AD,MF vuông góc DC (ME//AB, MF//BC) , nối MA và MN ta có DM = 3/4.DB => AE = CF = 1/4 AD ( AD = DC= AB = BC cạnh hình vuông) 
ME = MF = 3/4.AB, NC = 1/2.DC và CF = 1/4 DC => NF = 1/4 DC 
=> tam giác vuông AEM = tam giác vuông NFM ( hai cặp cạnh góc vuông bằng nhau đôi một) 
=>góc AME = góc NMF mà góc NMF + góc EMN = 90 độ => góc AME + góc EMN = 90 độ 
=> góc AMN = 90 độ (điều phải cm) 
Gọi I là trung điểm AN, do tam giác ADN vuông tại D =>ID= IA = IN (trung tuyến thuộc cạnh huyền bằng 1/2 cạnh huyền) , tương tự có tam giác AMN vuông tại M => IM = IA = IN 
=> 4 điểm A, D, N, M cách đều I => A, M, N, D cùng thuộc một đường tròn tâm là trung điểm I của đoạn AN 
tam giác vuông cân DEM có DM^2 = 2.ME^2 
tam giác vuông cân AMN có AN^2 = 2.MA^2 mà MA > ME 
=> AN^2 > DM^2 => AN > DM (điều phải cm) 

b, Trên AB, AD thứ tự lấy I, K sao AI=Ak. Kẻ AP vuông góc DI, cắt BC tại Q. Chứng minh 5 điểm C, D, K, P, Q cùng nằm trên một đường tròn 
góc DPQ = 90 độ (theo cách dựng AP vuông góc DI) 
và góc DCQ = 90 độ (gt ABCD là hình vuông) nên D, P, C, Q thuộc đường tròn đường kính DQ. 
ta sẽ c/m K thuộc đường tròn đường kính DQ.nghĩa là góc DKQ = 90 độ 
xét tứ giác IPQB có góc P và B vuông => góc PQB + góc PIB = 180 độ 
mà góc góc PIB + góc PIA = 180 độ =>góc PIA =góc PQB => góc DIA = góc AQB 
xét 2 tam giác vuông DAI và ABQ có AD = AB và góc DIA = góc AQB 
=> tam giác DAI = tam giác ABQ ( cạnh góc vuông, góc nhọn) => AK = BQ => KQ//AB 
=> góc DKQ = 90 độ => K thuộc đường tròn đường kính DQ. 
=> 5 điểm C, D, K, P, Q cùng nằm trên một đường tròn ( điều phải c/m)

AH vuông góc DM

=>góc MAH=góc MDA

Xét ΔABP vuông tại B và ΔDAM vuông tại A có

AB=AD

góc MAH=góc MDA

=>ΔABP=ΔDAM

=>BP=AM=AN

mà BC=AD

nên PC=ND

=>PCND là hình chữ nhật

=>P,C,D,N cùng nằm trên đường tròn đường kính DP

mà H nằm trên đường tròn đường kính DP(góc DHP=90 độ)

nên C,D,N,H,P cùng thuộc 1 đường tròn