Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M I H K
Lần lượt kẻ BH và DK vuông góc với AI
\(S_{\Delta ABM}=\frac{1}{2}AM.BH=b\Rightarrow BH=\frac{2b}{AM}=\frac{2b}{m}\)
\(S_{\Delta ADM}=\frac{1}{2}AM.DK=d\Rightarrow DK=\frac{2d}{m}\)
Xét tam giác vuông \(AKD\) và \(BHA\) có:
\(\left\{{}\begin{matrix}AD=AB\left(gt\right)\\\widehat{ADK}=\widehat{BAH}\left(góc-có-cạnh-tương-ứng-vuông-góc\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AKD=\Delta BHA\left(ch-gn\right)\Rightarrow DK=AH\Rightarrow AH=\frac{2d}{m}\)
Áp dụng Pitago cho tam giác \(ABH\):
\(AB^2=AH^2+BH^2=\frac{4d^2}{m^2}+\frac{4b^2}{m^2}=\frac{4}{m^2}\left(b^2+d^2\right)\)
Mà \(S_{ABCD}=AB^2\Rightarrow S_{ABCD}=\frac{4}{m^2}\left(b^2+d^2\right)\) (đpcm)
tam giác BDE: M là tđ(trung điểm) DE, N là tđ BE => MN là đtb(đường trung bình) của tam giác BDE.=> MN//DB <=> MN//BA
tương tự c/m MQ là đtb của tam giác DEC=> MQ//EC hay MQ//AC. mà AC vuông góc AB=> MN vuông góc PQ.=> góc NMQ =90. tương tự theo cách đtb thì các góc còn lại của tứ giác MNPQ =90=> là hình chữ nhật
MN là đtb=> MN=1/2 DB. MQ=1/2 EC mà EC=DB=> MN=DB
=> tg là hình vuông(dhnb)
a) + b) + c)
A B C D H K
Vì chứng minh được câu a) thì khỏi cần chứng minh câu b) và c)
\(S_{ABD}=S_{BDC}\)
- Đáy AB = DC
- Có chiều cao bằng chiều cao của hình bình hành ( AH = BK)
\(S_{ADC}=S_{ABC}\)
- Đáy AB = DC
- Có chiều cao bằng chiều cao hình bình hành
Vì vậy có thể kết luận rằng :\(S_{ABD}=S_{BDC}=S_{ABC}=S_{ACD}\)
\(S_{ABD}=S_{OAB}+S_{AOD}\)
\(S_{ADC}=S_{AOD}+S_{DOC}\)
Vì có chung diện tích AOD nên S OAB = S DOC
Tương tự...
M B C D A H K
Kẻ BH và DK cùng vuông góc với AI.
Ta có \(\widehat{HIB}=\widehat{KAD}\) (so le trong) nên \(\Delta HIB\sim\Delta KAD\left(g-g\right)\)
\(\Rightarrow\frac{BH}{DK}=\frac{BI}{AD}=\frac{BI}{BC}=\frac{1}{2}\)
Lại có: \(S_{ABM}=\frac{1}{2}.m.BH\Rightarrow BH=\frac{2b}{m}\)
Tương tự \(DK=\frac{2d}{m}\)
Suy ra d = 2b hay \(d^2=4b^2.\).
Gọi độ dài cạnh của hình vuông ABCD là a thì BI = a/2.
Xét tam giác vuông ABI, đường cao BH ta có: \(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BI^2}\Rightarrow\frac{1}{\left(\frac{2b}{m}\right)^2}=\frac{1}{a^2}+\frac{1}{\left(\frac{a}{2}\right)^2}\)
\(\Leftrightarrow\frac{m^2}{4b^2}=\frac{5}{a^2}\Rightarrow a^2=\frac{4.5b^2}{m^2}=\frac{4}{m^2}\left(4b^2+b^2\right)=\frac{4}{m^2}\left(d^2+b^2\right)\)
Vậy \(S_{ABCD}=\frac{4}{m^2}\left(d^2+b^2\right).\)