K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

M B C D A H K

Kẻ BH và DK cùng vuông góc với AI.

Ta có  \(\widehat{HIB}=\widehat{KAD}\)  (so le trong) nên \(\Delta HIB\sim\Delta KAD\left(g-g\right)\)

\(\Rightarrow\frac{BH}{DK}=\frac{BI}{AD}=\frac{BI}{BC}=\frac{1}{2}\)

Lại có: \(S_{ABM}=\frac{1}{2}.m.BH\Rightarrow BH=\frac{2b}{m}\)

Tương tự \(DK=\frac{2d}{m}\)

Suy ra d = 2b hay \(d^2=4b^2.\).

Gọi độ dài cạnh của hình vuông ABCD là a thì BI = a/2.

Xét tam giác vuông ABI, đường cao BH ta có: \(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BI^2}\Rightarrow\frac{1}{\left(\frac{2b}{m}\right)^2}=\frac{1}{a^2}+\frac{1}{\left(\frac{a}{2}\right)^2}\)

\(\Leftrightarrow\frac{m^2}{4b^2}=\frac{5}{a^2}\Rightarrow a^2=\frac{4.5b^2}{m^2}=\frac{4}{m^2}\left(4b^2+b^2\right)=\frac{4}{m^2}\left(d^2+b^2\right)\)

Vậy \(S_{ABCD}=\frac{4}{m^2}\left(d^2+b^2\right).\)

NV
2 tháng 4 2019

A B C D M I H K

Lần lượt kẻ BH và DK vuông góc với AI

\(S_{\Delta ABM}=\frac{1}{2}AM.BH=b\Rightarrow BH=\frac{2b}{AM}=\frac{2b}{m}\)

\(S_{\Delta ADM}=\frac{1}{2}AM.DK=d\Rightarrow DK=\frac{2d}{m}\)

Xét tam giác vuông \(AKD\)\(BHA\) có:

\(\left\{{}\begin{matrix}AD=AB\left(gt\right)\\\widehat{ADK}=\widehat{BAH}\left(góc-có-cạnh-tương-ứng-vuông-góc\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AKD=\Delta BHA\left(ch-gn\right)\Rightarrow DK=AH\Rightarrow AH=\frac{2d}{m}\)

Áp dụng Pitago cho tam giác \(ABH\):

\(AB^2=AH^2+BH^2=\frac{4d^2}{m^2}+\frac{4b^2}{m^2}=\frac{4}{m^2}\left(b^2+d^2\right)\)

\(S_{ABCD}=AB^2\Rightarrow S_{ABCD}=\frac{4}{m^2}\left(b^2+d^2\right)\) (đpcm)

7 tháng 4 2019

em cảm ơn nhiều ạ

26 tháng 11 2021

stt11lop1a

26 tháng 11 2021

tam giác BDE: M là tđ(trung điểm) DE, N là tđ BE => MN là đtb(đường trung bình) của tam giác BDE.=> MN//DB  <=> MN//BA

tương tự c/m MQ là đtb của tam giác DEC=> MQ//EC hay MQ//AC. mà AC vuông góc AB=> MN vuông góc PQ.=> góc NMQ =90. tương tự theo cách đtb thì  các góc còn lại của tứ giác MNPQ =90=> là hình chữ nhật

MN là đtb=> MN=1/2 DB. MQ=1/2 EC mà EC=DB=> MN=DB

=> tg là hình vuông(dhnb)

31 tháng 1 2016

nghỉ tết rùi mà vẫn hok ak???

cao nguyễn thu uyên Đã nghỉ đâu == 

7 tháng 9 2017

a) + b) + c)

A B C D H K

Vì chứng minh được câu a) thì khỏi cần chứng minh câu b) và c)

\(S_{ABD}=S_{BDC}\)

- Đáy AB = DC

- Có chiều cao bằng chiều cao của hình bình hành ( AH = BK)

\(S_{ADC}=S_{ABC}\)

- Đáy AB = DC 

- Có chiều cao bằng chiều cao hình bình hành

Vì vậy có thể kết luận rằng :\(S_{ABD}=S_{BDC}=S_{ABC}=S_{ACD}\)

\(S_{ABD}=S_{OAB}+S_{AOD}\)

\(S_{ADC}=S_{AOD}+S_{DOC}\)

Vì có chung diện tích AOD nên S OAB = S DOC

Tương tự...