Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác AMB đồng dạng với tam giác BMN ( Tự chứng minh )
Suy ra \(\frac{AM}{BM}=\frac{AD}{BN}\Rightarrow AM.BN=AD.BM\)
b) Ta chứng minh tam giác ADM bằng tam giác CDK
Rồi suy ra tam giác DMK cân
Mà DM vuông góc với DK
Nên tam giác DMK vuông cân
a)Hình như đề sai. phải là: \(\frac{KM}{KN}=\frac{DN}{DM}\Leftrightarrow\frac{KM}{KM+MN}=\frac{DN}{DN+NM}\Leftrightarrow\)đến đây để c/m đc thì phải c/m KM=DN
hình nè:
b) dễ dàng c/m tam giác AGB đồng dạng tam giác AEC
=> \(\frac{AG}{AE}=\frac{AB}{AC}\Rightarrow AE.AB=AG.AC\)
đề câu này cũng sai. phải là: AB.AE=AD.AF hay là một tỉ số nào đó
theo chị em phải c/m tỉ số thứ 2 đó = CG.AC
=> cộng vào sẽ được AC(AG+CG)=AC ^2
đến đây chị chỉ giúp được vậy thôi. bài khó quá
A B C D H K I M N J P 1 2
a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC
=> ^CBH = ^CDK.
Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g)
=> \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm).
b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\)
Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1)
BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc)
=> ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2)
Từ (1) và (2) => ^ABC = ^KCH
Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm).
c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC.
Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g)
=> \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3)
Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD)
=> \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\)
Mà CD=AB nên \(AB.AH=CP.AC\)(4)
Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\)
\(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm).
d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD)
Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm).
e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ.
=> \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales)
Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).