\(M...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

Qua $M$ kẻ $EF\perp AB, CD$ với $E\in AB, F\in DC$

Dễ thấy $AEFD$ và $EBCF$ là hình chữ nhật do có 4 góc vuông.

Do đó $AE=DF; EB=CF; EF=AD=BC$

Áp dụng định lý Pitago ta có:

\(MA^2+MB^2+MC^2+MD^2=AE^2+EM^2+EB^2+EM^2+CF^2+MF^2+DF^2+MF^2\)

\(=(AE^2+DF^2)+(EB^2+CF^2)+2EM^2+2FM^2\)

\(=2AE^2+2BE^2+2EM^2+2MF^2=2[(AE^2+BE^2)+(EM^2+MF^2)]\)

Áp dụng BĐT AM-GM ta có:

\(MA^2+MB^2+MC^2+MD^2=2(AE^2+BE^2)+2(EM^2+MF^2)\geq (AE+BE)^2+(MF+EM)^2\)

\(=AB^2+EF^2=AB^2+AD^2=2\)

Ta có đpcm.

Dấu "=" xảy ra khi $M$ là tâm hình vuông.

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:

undefined

\(MA+MB=MC+MD\)

\(\left(MA+MD\right)+\left(MB+MC\right)\)

\(\left(MA+MD\right)\) nhỏ nhất khi \(AMD\) trên đường thẳng

\(\left(MB+MC\right)\) nhỏ nhất khi \(BMC\)  trên đường thẳng

=> GTNN đạt được khi \(M\) là giao hai đường chéo \(AD,BC\)

Mình làm hai cách nhé

C D A D O M

Với ba điểm M, A, C => MA + MC ≥ AC

Ta có: MB + MD ≥ BD

AM + MB + MC - MD ≥ AC + BD (Không đổi)

Dấu ''='' xảy ra khi:

+) M thuộc AC <=> M = O

+) M thuộc BD

Vậy GTNN (AM + MB + MC + MD) = AC + BD <=> M = O