Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Qua $M$ kẻ $EF\perp AB, CD$ với $E\in AB, F\in DC$
Dễ thấy $AEFD$ và $EBCF$ là hình chữ nhật do có 4 góc vuông.
Do đó $AE=DF; EB=CF; EF=AD=BC$
Áp dụng định lý Pitago ta có:
\(MA^2+MB^2+MC^2+MD^2=AE^2+EM^2+EB^2+EM^2+CF^2+MF^2+DF^2+MF^2\)
\(=(AE^2+DF^2)+(EB^2+CF^2)+2EM^2+2FM^2\)
\(=2AE^2+2BE^2+2EM^2+2MF^2=2[(AE^2+BE^2)+(EM^2+MF^2)]\)
Áp dụng BĐT AM-GM ta có:
\(MA^2+MB^2+MC^2+MD^2=2(AE^2+BE^2)+2(EM^2+MF^2)\geq (AE+BE)^2+(MF+EM)^2\)
\(=AB^2+EF^2=AB^2+AD^2=2\)
Ta có đpcm.
Dấu "=" xảy ra khi $M$ là tâm hình vuông.
\(MA+MB=MC+MD\)
\(\left(MA+MD\right)+\left(MB+MC\right)\)
\(\left(MA+MD\right)\) nhỏ nhất khi \(AMD\) trên đường thẳng
\(\left(MB+MC\right)\) nhỏ nhất khi \(BMC\) trên đường thẳng
=> GTNN đạt được khi \(M\) là giao hai đường chéo \(AD,BC\)
Mình làm hai cách nhé
C D A D O M
Với ba điểm M, A, C => MA + MC ≥ AC
Ta có: MB + MD ≥ BD
AM + MB + MC - MD ≥ AC + BD (Không đổi)
Dấu ''='' xảy ra khi:
+) M thuộc AC <=> M = O
+) M thuộc BD
Vậy GTNN (AM + MB + MC + MD) = AC + BD <=> M = O
Cần ko gấp