K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

A B C D N E F M

a) Ta có: CD = BC; ^CDE = ^CBF ( = 90o), ^DCE = ^BCF (cùng phụ với ^NCB)

=> \(\Delta\)EDC = \(\Delta\)FBC (g.c.g) => CE = CF.

Chỗ chứng minh 3 điểm thẳng hàng và mấy câu còn lại chưa nghĩ ra:(((

15 tháng 9 2019

A B C D E F M N

a) Dễ chứng minh \(\Delta\)CDE = \(\Delta\)CBF (g.c.g), suy ra CE = CF.

Ta thấy các tam giác EAF vuông tại A, ECF vuông tại C có M là trung điểm cạnh huyền EF

Suy ra MA = MC (= EF/2). Vậy M,B,D cùng nằm trên trung trực đoạn AC hay M,B,D thẳng hàng.

b) Từ câu a dễ có \(\Delta\)ECF vuông cân tại C. Vì M là trung điểm EF nên \(\Delta\)MEC vuông cân tại M

Do đó ^ACE = ^BCM (= 450 - ^BCE). Đồng thời \(\Delta\)CBA ~ \(\Delta\)CME (g.g) kéo theo \(\Delta\)EAC ~ \(\Delta\)MBC (c.g.c).

c) \(BN=x\Rightarrow AN=a-x\). Áp dụng hệ quả ĐL Thales ta có:

\(\frac{BC}{AE}=\frac{BN}{AN}\) hay \(\frac{a}{AE}=\frac{x}{a-x}\Rightarrow AE=\frac{a^2-ax}{x}\)

Áp dụng ĐL Pytagoras cho \(\Delta\)CDE có: 

\(CE^2=CD^2+DE^2=a^2+\left(a+\frac{a^2-ax}{x}\right)^2=\frac{a^4+a^2x^2}{x^2}\)

Lại có \(S_{CAE}=\frac{CD.AE}{2}=\frac{a^3-a^2x}{2x};S_{CEF}=\frac{CE^2}{2}=\frac{a^4+a^2x^2}{2x^2}\)

Suy ra \(S_{ACFE}=\frac{a^3-a^2x}{2x}+\frac{a^4+a^2x^2}{2x^2}=\frac{a^4+a^3x}{2x^2}.\)

d) Ta đã tính được \(S_{ACFE}=\frac{a^4+a^3x}{2x^2};S_{ABCD}=a^2\). Để \(S_{ACFE}=3S_{ABCD}\)thì:

\(\frac{a^4+a^3x}{2x^2}=3a^2\Leftrightarrow a^2+ax-6x^2=0\Leftrightarrow\left(2x-a\right)\left(3x+a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{a}{2}\\x=-\frac{a}{3}\left(l\right)\end{cases}}\). Vậy \(x=\frac{a}{2}\)hay N là trung điểm đoạn AB thì \(S_{ACFE}=3S_{ABCD}\).

22 tháng 2 2018

Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath

Em tham khảobài tương tự tại đây nhé.

29 tháng 2 2020

Bạn tham khảo nha

Câu hỏi của Nguyễn Quỳnh Nga - Toán lớp 8 | Học trực tuyến

29 tháng 2 2020

Link bị lỗi mình chụp lại 

10 tháng 4 2018

Câu d, là câu riêng luôn rồi nhé 

Đặt các cạnh hình vuông là a, BM= BE= x 

\(\Rightarrow S_{MBE}=\frac{x^2}{2}\)

\(S_{AMD}=S_{CED}=\frac{a\left(a-x\right)}{2}\)

Ta có: \(S_{DEN}=a^2-\left(a\left(a-x\right)+\frac{x^2}{2}\right)\)

\(=\frac{2a^2-2a^2+2ax-x^2}{2}\)

\(=\frac{a^2-\left(a^2-2ax+x^2\right)}{2}\)

\(=\frac{a^2}{2}-\frac{\left(a-x\right)^2}{2}\le\frac{a^2}{2}\)

Dấu "=" xảy ra khi: a=x <=> BC=BE <=> E trùng C 

Quá trình mình làm chỉ tắt những ý chính, bạn làm bài cần làm đầy đủ hơn!!!