K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

Ta có:Bài tập: Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ CDB ∼ Δ ABE ( g - g )

⇒ CD/AB = BC/AE

hay CD/15 = 10/12 ⇔ CD = (10.15)/12 ⇒ CD = 18 ( cm )

Áp dụng định lý Py – ta – go vào tam giác vuông ABE có:

8 tháng 7 2018

Ta có:Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ CDB ∼ Δ ABE ( g - g )

⇒ CD/AB = BC/AE hay CD/15 = 10/12 ⇔ CD = ( 10.15)/12 ⇒ CD = 18 ( cm )

Áp dụng định lý Py – ta – go vào tam giác vuông ABE có:

11 tháng 8 2017

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

19 tháng 3 2019

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

a)

2016-01-16_191244

Vậy ∠EBD = 900

Vậy trong hình vẽ có ba tam giác vuông đó là:

∆ABE, ∆CBD, ∆EBD.

b) ∆ABE và ∆CDB có:

∠A = ∠C = 900

∠ABE = ∠CDB

=> ∆ABE ∽ ∆CDB => AB/CD = AE/CB
=> CD = AB.CB/AE
= 18 (cm)

∆ABE vuông tại A => BE =

2016-01-16_194702 = 18 cm

∆EBD vuông tại B => ED =

2016-01-16_194738

= 28,2 cm

c) Ta có: 2016-01-16_194946

= 1/2 . 10.15 + 1/2 . 12.18

= 75 + 108 = 183 cm2

SACDE = 1/2 (AE + CD).AC =1/2 (10+18).27=378 cm2

=> SEBD = SEBD – ( SABE + SDBC) = 378 – 183 = 195cm2

15 tháng 3 2018

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chứng minh

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8
ai giúp mình đc không ạ ????????????????iu các bạn nhiều lắm các bạn trả lời đúng nha đừng sai đó :D:))))))))Bài 1: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD =28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?Bài 2: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD =4cm. Chứng minh rằng:a) Δ BAD ∼ Δ DBCb) ABCD là hình thangBài 3*: Cho hình vẽ như bên, biết EBAˆ = BDCˆa)...
Đọc tiếp

ai giúp mình đc không ạ ????????????????iu các bạn nhiều lắm các bạn trả lời đúng nha đừng sai đó :D

:))))))))

Bài 1: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD =
28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?
Bài 2: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD =
4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
Bài 3*: Cho hình vẽ như bên, biết EBAˆ = BDCˆ
a) Trong hình vẽ có bao nhiêu tam giác vuông? Kể tên các tam giác vuông đó.
b) Cho AE = 10cm, AB = 15cm, BC = 12cm. Hãy tính độ dài các đoạn thẳng CD,
BE, BD và ED (làm tròn đến chữ số thập phân thứ nhất)
c) So sánh diện tích tam giác BDE với tổng diện tích hai tam giác AEB và BCD
Bài 4: Trên một cạnh của một góc xOy ( Ox ≠ Oy ) đặt các đoạn thẳng OA = 5cm,
OB = 16cm Trên cạnh thứ hai của góc đó đặt các đoạn thẳng OC = 8cm, OD =
10cm.
a) Chứng minh Δ OCB ∼ Δ OAD
b) Gọi I là giao điểm của các cạnh AD và BC. Chứng minh rằng Δ IAB và Δ ICD
có các góc bằng nhau từng đôi một

1

zồi ôi dài quá

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.a) Tính các tỷ số số AB/ BC và  BC/CDb) Chứng minh BC2 = AB.CD2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.a) Tính tỉ số AB/CDb) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai...
Đọc tiếp

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.

a) Tính các tỷ số số AB/ BC và  BC/CD

b) Chứng minh BC2 = AB.CD

2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.

a) Tính tỉ số AB/CD

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD 

Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.

a) Chứng minh AD/BD = AE/EC

b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.

Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.

a) Chứng minh AD/AB = AE/AC

b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC

Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:

a) Tỷ số DE/AE

b) Độ dài các đoạn thẳng AE, DE và AD.

Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC

b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.

0
22 tháng 4 2017

Giải bài 43 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.Bài 4: Cho hình...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.

Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.

Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.

Bài 4: Cho hình bình hành ABCD. Vẽ AH vuông góc với CD tại H, AK vuông góc với BC tại K. Chứng minh rằng tam giác KAH đồng dạng với tam giác ABC

. Bài 5: Cho hình vuông ABCD. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại M, tia DE cắt đường thẳng AB tại N. Chứng minh rằng

a) Tam giác NBC đồng dạng với tam giác BCM                                  b) BM vuông góc với CN.

Bài 6: Cho tam giác ABC có AB = 2,5cm, AC = 2cm, BC =3cm. Chứng minh rằng 𝐴̂ =2𝐵̂

. Bài 7: Cho tam giác ABC và G là điểm thuộc miền trong tam giác. Tia AG cắt BC tại K và tia CG cắt AB tại M. Biết AG =2GK và CG = 2GM. Chứng minh rằng G là trọng tâm của tam giác ABC.

Bài 8: Cho tam giác ABC cân tại A và M là trung điểm của cạnh đáy BC.Một điểm D thay đổi trên cạnh AB. Lấy một điểm E trên cạnh AC sao cho CE .BD = MB2 . Chứng minh rằng:

a) Tam giác DBM và MCE đồng dạng

b) Tam giác DME cùng đồng dạng với hai tam giác trên.

c) Dm là phân giác của góc BDE, EM là phân giác của góc CED.

d) Khoảng cách từ M đến ED không đổi khi D thay đổi trên AB.

 

0