Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, AB song song với CE(gt) nên góc ABC = góc ECB
AC song song với BE(gt) nên góc ACB = góc EBC
Tam giác ABC = Tam giác ECB (g.c.g) nên AC=BE (2 cạnh tương ứng)
Mà AC =BD (gt) do đó: BD =BE
Vậy tam giác BDE cân tại B
b, Tam giác BDE cân tại B (cmt) suy ra: góc BDC =góc E (t/c)
AC song song với BE(gt) nên góc ACD = góc E (đồng vị)
Tam giác ACD = tam giác BDC (c.g.c)
c, 2 tam giác bằng nhau trên suy ra: góc ADC = góc BCD
Vậy ABCD là hình thang cân (định nghĩa)
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
R A M B H Q C D S N P
a) Xét tam giác vuông ABR và ADQ có:
AB = AD (gt)
Góc BAR + góc BAP = 90 độ
Góc DAQ + góc BAP = 90 độ
=> Góc BAR = Góc DAQ
=> Tam giác vuông ABR = tam giác vuông ADQ (cạnh góc vuông – góc nhọn kề)
=> AR = AQ (2 cạnh tương ứng)
=> Tam giác AQR cân tại A.
CMTT ta có tam giác ADS = tam giác ABP
=> AS = AP => Tam giác APS cân tại A.
b) Tam giác AQR cân tại A => Trung tuyến AM đồng thời là đường cao.
=> AM vuông góc với QR => Góc AMH = 90 độ
Tương tự: Tam giác APS cân tại A => Trung tuyến AN đồng thời là đường cao.
=> AN vuông góc với SP => góc ANP = 90 độ hay góc ANH= 90 độ.
Tam giác AQR vuông cân tại A => Góc AQR = góc ARQ = 45 độ => Góc PQH = 45 độ.
Tam giác APS vuông cân tại A => góc ASP = góc APS = 45 độ => góc QPH = 45 độ (đối đỉnh).
Xét tam giác PHQ có: Góc PQH + góc QPH = 45 độ + 45 độ = 90 độ
=> Tam giác PHQ vuông cân tại H => PH vuông góc với PQ
=> góc NHM = 90 độ
Xét tứ giác AMHN có: Góc AMH = góc ANH = góc NHM = 90 độ
=> AMHN là hình chữ nhật (dhnb)
c) Xét tam giác SQR có:
BC vuông góc CD => RC vuông góc SQ => RC là đường cao.
AP vuông góc AR => QA vuông góc RS => QA là đường cao.
Mà RC cắt QA tại P
Vậy P là trực tâm tam giác SQR.
d) Tam giác ANP vuông tại A có trung tuyến AN => AN = SP/2
Tam giác CSP vuông tại C có trung tuyến CN => CN = SP/2
=> AN = CN => N thuộc trung trực của AC.
CMTT ta có MA = MC => M thuộc trung trực của AC.
Vậy MN là trung trực của AC.
e) Ta có BA = BC (gt) => B thuộc trung trực của AC.
Mà MN là trung trực của AC (cmt) => B thuộc MN
Tương tự DA = DC (gt) => D thuộc trung trực của AC.
Mà MN là trung trực của AC (cmt) => D thuộc MN
Vậy M, B, N, D thẳng hàng.
d: OA+OC=AC
OB+OD=BD
mà OA=OC và AC=BD
nên OC=OD
OC=OD
EC=ED
=>OE là trung trực của CD
=>O,E,trung điểm của CD thẳng hàng