Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O
a/
Hai tg ABD và tg ABC có chung AB và đường cao từ D->AB = đường cao từ C->AB nên \(S_{ABD}=S_{ABC}\)
Hai tg này có phần diện tích chung là \(S_{ABO}\Rightarrow S_{AOD}=S_{BOC}\)
b/
Hai tg ABC và tg ACD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Hai tg trên có chung AC nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
Hai tg ABO và tg AOD có chung AO nên
\(\dfrac{S_{ABO}}{S_{AOD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
\(\Rightarrow S_{AOD}=2xS_{ABO}=2x3,5=7cm^2\)
\(\Rightarrow S_{ABD}=S_{ABO}+S_{AOD}=3,5+7=10,5cm^2\)
Hai tg ABD và tg BCD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\Rightarrow S_{BCD}=2xS_{ABD}=2x10,5=21cm^2\)
\(\Rightarrow S_{ABCD}=S_{ABD}+S_{BCD}=10,5+21=31,5cm^2\)
Tuổi ông năm nay gấp 4,2 lần tuổi cháu => Tuổi ông = 42/10 = 21/5 tuổi cháu.
10 năm trước tuổi ông gấp 10,6 lần tuổi cháu => Tuổi ông = 106/10 = 53/5 tuổi cháu
Hiệu số phần tuổi ông và cháu là : 53 - 5 = 48 (phần)
Vậy hiện nay ông vẫn hơn cháu 48 phần => Để 21/5 có hiệu số phần là 48 ta có 21/5 =.63/15
10 tuổi tương ứng số phần : 63 - 53 = 10 (phần)
Tuổi ông hiện nay : 10 : 10 x 63 = 63 (tuổi)
Tuổi cháu hiện nay : 10 : 10 x 15 = 15 (tuổi)
a, Dựng chiều cao CG của \(\Delta\)BCD và chiều cao AE của \(\Delta\) ABD
\(\dfrac{S_{ABD}}{S_{BCD}}\) = \(\dfrac{AE}{CG}\) (vì hai tam giác có chung cạnh đáy BD nên tỉ số diện tích là tỉ số hai chiều cao tương ứng)
\(\dfrac{S_{ABD}}{S_{BCD}}\) = \(\dfrac{AB}{CD}\) (vì hai tam giác có chiều cao bằng nhau nên tỉ số diện tích hai tam giác là tỉ số hai cạnh đáy)
⇒ \(\dfrac{AE}{CG}\) = \(\dfrac{AB}{CD}\) = \(\dfrac{1}{3}\)
\(\dfrac{S_{AOB}}{S_{BOC}}\) = \(\dfrac{AE}{CG}\) ( hai tam giác có chung cạnh đáy OB nên tỉ số diện tích là tỉ số hai chiều cao tương ứng)
\(\dfrac{S_{AOB}}{S_{BOC}}\) = \(\dfrac{AO}{OC}\) ( vì hai tam giác có chiều cao bằng nhau nên tỉ số diện tích là tỉ số hai cạnh đáy)
⇒ \(\dfrac{AE}{CG}\) = \(\dfrac{AO}{OC}\) = \(\dfrac{1}{3}\)
Chứng minh tương tự ta có: \(\dfrac{BO}{OD}\) = \(\dfrac{1}{3}\)
b, SABD = SABC ( vì hai tam giác có chung cạnh đáy AB và hai chiều cao bằng nhau)
SABD = SABO + SAOD = SAOB + SBOC = SABC
SAOD \(\times\) 1 = SBOC
SAOD \(\times\) 1 = SAOD
SAOD \(\times\) \(\dfrac{1}{3}\) = SAOB (vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BD và \(\dfrac{OB}{OD}\) = \(\dfrac{1}{3}\))
SAOD \(\times\) 3 = SDOC ( vì hai tam giác có chung chiều cao hạ từ đỉnh D xuống đáy AC và \(\dfrac{AO}{OC}\) =\(\dfrac{1}{3}\))
Cộng các vế trên ta với nhau ta có diện tích hình thang ABCD bằng:
1 + 1 + \(\dfrac{1}{3}\) + 3 = \(\dfrac{16}{3}\) ( diện tích hình tam giác AOD)
Diện tích tam giác AOD là: 32 : \(\dfrac{16}{3}\) = 6 (m2)
ĐS...
Mọi ng giải nhanh giúp mình nhé, mình đag cần gấp lắm, mai đi học r, cảm ơn mng nh🥹
ko cần trình bày lời giải phần A và B đâu ai trình bày được phần C aquariuscute cho 7 **** luôn kèm theo 3 **** của tớ nữa là 10 **** thích thế còn j