Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn c: Đường tròn qua B, D, C Đường tròn c_1: Đường tròn qua M với tâm O Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [A, D] Đoạn thẳng j: Đoạn thẳng [B, C] Đoạn thẳng k_1: Đoạn thẳng [D, C] Đoạn thẳng r: Đoạn thẳng [M, B] Đoạn thẳng s: Đoạn thẳng [M, N] Đoạn thẳng t: Đoạn thẳng [D, N] Đoạn thẳng a: Đoạn thẳng [E, C] Đoạn thẳng b: Đoạn thẳng [O, B] Đoạn thẳng d: Đoạn thẳng [O, D] Đoạn thẳng e: Đoạn thẳng [M, O] Đoạn thẳng f_1: Đoạn thẳng [B, D] Đoạn thẳng k: Đoạn thẳng [B, I] Đoạn thẳng g_1: Đoạn thẳng [I, K] Đoạn thẳng h_1: Đoạn thẳng [I, D] B = (1.16, 5.22) B = (1.16, 5.22) B = (1.16, 5.22) A = (-2.94, -0.34) A = (-2.94, -0.34) A = (-2.94, -0.34) D = (9.24, 0.56) D = (9.24, 0.56) D = (9.24, 0.56) Điểm C: Giao điểm của h, i Điểm C: Giao điểm của h, i Điểm C: Giao điểm của h, i Điểm O: Giao điểm của c, l Điểm O: Giao điểm của c, l Điểm O: Giao điểm của c, l Điểm M: Giao điểm của n, p Điểm M: Giao điểm của n, p Điểm M: Giao điểm của n, p Điểm N: Giao điểm của n, q Điểm N: Giao điểm của n, q Điểm N: Giao điểm của n, q Điểm E: Giao điểm của l, s Điểm E: Giao điểm của l, s Điểm K: Giao điểm của a, f_1 Điểm K: Giao điểm của a, f_1 Điểm K: Giao điểm của a, f_1 Điểm I: Tâm của c Điểm I: Tâm của c Điểm I: Tâm của c
a. Ta thấy ngay BCDO là tứ giác nội tiếp nên \(\widehat{MBO}=\widehat{ODC}\) (Góc ngoài tại đỉnh đổi)
b. Xét tam giác CMN có CO là đường cao đồng thời phân giác, vậy nó là tam giác cân. Từ đó suy ra \(\widehat{CMA}=\widehat{CNA}\)
Do ABCD là hình bình hành nên \(\widehat{CNA}=\widehat{BAM}\Rightarrow\widehat{BAM}=\widehat{BMA}\Rightarrow BM=BA=DC\left(1\right)\)
Xét trong đường tròn ngoại tiếp tam giác BDC có \(\widehat{BCO}=\widehat{DCO}\Rightarrow BO=OD\left(2\right)\)
Theo câu a, \(\widehat{MBO}=\widehat{ODC}\left(3\right)\)
Từ (1), (2), (3) suy ra \(\Delta OBM=\Delta ODC\left(g-c-g\right)\)
A B C M H
Vì AM là đường trung tuyến của tam giác vuông ABC nên ta có AM = MC = MB = BC/2
Dễ thấy \(\widehat{AMB}=2.\widehat{ACB}\) (Tam giác AMC cân tại M có AMB là góc ngoài)
Suy ra : \(Sin2\alpha=Sin\widehat{AMB}=\frac{AH}{AM}\)
Mặt khác ta lại có \(BC=2AM\) ; \(AH=\frac{AB.AC}{BC}\) \(\Rightarrow Sin2\alpha=\frac{\frac{AB.AC}{BC}}{\frac{BC}{2}}=\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=2Sin\widehat{ABC}.Sin\widehat{ACB}=2Cos\alpha.Sin\alpha\)
Vậy \(Sin2\alpha=2Sin\alpha.Cos\alpha\)