K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MN
21 tháng 2 2020
A B C D M N H
a) \(S_{ABCD}=\frac{\left(3+7\right).4}{2}=20\left(cm^2\right)\)
b) Ta có : MA = MD
NB = NC
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow\)MN // BC (1)
Ta có : MD ⊥ BC
NH ⊥ BC
\(\Rightarrow\)MD // NH (2)
Từ (1) và (2) suy ra : Tứ giác MNHD là hình bình hành
Mà : \(\widehat{MDH}=90^o\)
\(\Rightarrow\)Tứ giác MNHD là hình chữ nhật (dhnb)
Vì M là trung điểm của AD
\(\Rightarrow\)MD = \(\frac{1}{2}\)AD
\(\Rightarrow\)MD = 2 cm
Vì MN là đường trung bình của hình thang ABCD
\(\Rightarrow MN=\frac{3+7}{2}=5cm\)
Vậy \(S_{MNHD}=MD.MN=2.5=10\left(cm^2\right)\)
B C D A H K a a a a 1/2a 1/2a
Câu a :
\(S_{ABCD}=\dfrac{1}{2}\left(a+2a\right)\times\left[a^2-\left(\dfrac{a}{2}\right)^2\right]\)
Câu b :
\(S_{ABCE}=a.\left[a^2-\left(\dfrac{a}{2}\right)^2\right]\)
Còn câu c, có gì khó khăn?
Áp dụng định lý Pytago cho tam giác CKD vuông tại K ta có:
\(CK=\sqrt{CD^2-DK^2}=\sqrt{a^2-\left(\dfrac{a}{2}\right)^2}\\ =\sqrt{a^2-\dfrac{a^2}{4}}=\sqrt{\dfrac{3a^2}{4}}=\dfrac{a\sqrt{3}}{2}\)
Vì tam giác ACD có CK là đường cao ứng với đáy AD nên
\(S_{ACD}=\dfrac{CK.AD}{2}=\dfrac{\dfrac{a\sqrt{3}}{2}.2a}{2}=a^2\sqrt{3}\)
Vậy..................