Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C F E I H M D
mk chỉ giải 2 câu thoy nha!!!
xét tứ giác BHCD có BC\(\cap\)HD tại M
màMB=MC,MH=MD=>△BMD=△HMC(c.g.c)=>BD=HC(1)
△BMH=△CMD(c.g.c)=>BH=CD(2)
từ (1) ,(2) =>BHCD là hbh
do H là giao của HF và CE =>HϵCF=>HF//BD(do CH//BD)
=>\(\widehat{F}=\widehat{B}=90^o\)=>△ABD vuông tại B
Cho hình bình hành ABCD, tia phân giác của góc D và góc B cắt AB và CD tại M và N
a, chứng minh góc AMD = góc ABN
b, Chứng minh tứ giác DMBN là hình bình hành
c, tia phân giác của góc A cắt DM và BN tại H và G, tia phân giác của góc C cắt DM và BN tại E và F Chứng minh tứ giác HEFG là hình chữ nhật
a: Xét tứ giác AECF có
AF//CE
AF=CE
Do đó: AECF là hình bình hành
b: Xét ΔDHC có
E là trung điểm của DC
EI//HC
Do đó: I là trung điểm của DH
=>DI=IH(1)
Xét ΔAIB có
F là trung điểm của AB
FH//AI
Do đó: H là trung điểm của BI
=>BH=HI(2)
Từ (1) và (2) suy ra DI=IH=BH