K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

a) Xét ΔOIC và ΔABC có:

   \(\widehat{ACB}\) : góc chung

   \(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))

 => ΔOIC~ΔABC(g.g)

=>\(\frac{OI}{AB}=\frac{CI}{BC}\)

=> BC.OI=AB.CI

b) Theo định lý đảo của định lý ta-let vào ΔBDC :

=>  \(\frac{OI}{DC}=\frac{BI}{BC}\)

29 tháng 2 2020

A B C D I K O

\(1,\hept{\begin{cases}OI//AB\Rightarrow\frac{OI}{AB}=\frac{OD}{BD}\\OI//CD\Rightarrow\frac{OI}{CD}=\frac{OA}{AC}\\AB//CD\Rightarrow\frac{OA}{AC}=\frac{OB}{BD}\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}=\frac{OD}{BD}+\frac{OA}{AC}=\frac{OD}{BD}+\frac{OB}{BD}=\frac{BD}{BD}=1\)

\(\hept{\begin{cases}OK//AB\Rightarrow\frac{OC}{AC}=\frac{OK}{AB}\\OK//CD\Rightarrow\frac{OK}{CD}=\frac{OB}{BD}\\\frac{CB}{BD}=\frac{OA}{AC}\end{cases}}\Rightarrow\frac{OK}{AB}+\frac{OK}{CD}=\frac{OC}{AC}+\frac{OB}{BD}=\frac{OC}{AC}+\frac{OA}{AC}=\frac{AC}{AC}=1\)

\(2,\hept{\begin{cases}\frac{OI}{AB}+\frac{OI}{CD}=1\\\frac{OK}{AB}+\frac{OK}{CD}=1\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}+\frac{OK}{AB}+\frac{OK}{CD}=2\)

\(\Leftrightarrow\frac{OI+OK}{AB}+\frac{OI+OK}{CD}=2\)

\(\Leftrightarrow\frac{IK}{AB}+\frac{IK}{CD}=2\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\left(đpcm\right)\)

29 tháng 2 2020

Giúp mik bài này với: https://olm.vn/hoi-dap/detail/244594379058.html

11 tháng 4 2022

-Sửa đề: \(\widehat{A}=\widehat{D}=90^0\)

a) -△OAB và △OCD có: \(\widehat{OAB}=\widehat{OCD};\widehat{AOB}=\widehat{COD}\)

\(\Rightarrow\)△OAB∼△OCD (g-g).

b) \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Leftrightarrow AD^2=AD^2\) (luôn đúng).

c) -△BCD có: OI//DC \(\Rightarrow\dfrac{DC}{OI}=\dfrac{BD}{BO}\Rightarrow\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)

-△AOB có: AB//DC \(\Rightarrow\dfrac{OD}{BO}=\dfrac{DC}{AB}=\dfrac{DC}{OI}-1\)

\(\Rightarrow\dfrac{DC}{AB}+1=\dfrac{DC}{OI}\Rightarrow\dfrac{DC+AB}{AB}=\dfrac{DC}{OI}\Rightarrow\dfrac{1}{OI}=\dfrac{DC+AB}{DC.AB}=\dfrac{1}{AB}+\dfrac{1}{DC}\)

 

3 tháng 4 2017

BẠN DÙNG ĐỊNH LÝ TA-LÉT ĐỂ C/M OM=ON

Vì OM // AB & OM // CD nên 

\(\frac{OM}{AB}=\frac{DM}{AD}\&\frac{OM}{CD}=\frac{AM}{AD}\)

\(\Rightarrow\frac{OM}{AB}+\frac{OM}{CD}=\frac{DM}{AD}+\frac{AM}{AD}\)

\(\Leftrightarrow OM\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DM+AM}{AD}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OM}\)(1)

TƯƠNG TỰ \(\frac{1}{AB}+\frac{1}{CB}=\frac{1}{ON}\)(2)

CỘNG VẾ VỚI VẾ CỦA (1) VÀ (2) TA CÓ:

\(2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{ON}\)MÀ OM=ON(C/M TRÊN) NÊN MN=2.OM

\(\Rightarrow2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{OM}=\frac{2}{OM}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2.OM}=\frac{2}{MN}\left(ĐPCM\right)\)

31 tháng 3 2017

Mình mới học lớp 5 thôi nên chỉ vẽ hình thôi à! Thông cảm nha!

Hình như sau:

Thấy đúng thì !

a) Ta có: \(\frac{AD}{AB}=\frac{2}{6}=\frac{1}{3}\)

\(\frac{AE}{AC}=\frac{3}{9}=\frac{1}{3}\)

Do đó: \(\frac{AD}{AB}=\frac{AE}{AC}\)(\(=\frac{1}{3}\))

Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)

nên DE//BC(định lí ta lét đảo)

Xét tứ giác BCED có DE//BC(cmt)

nên BCED là hình thang(định nghĩa hình thang)

b) Ta có: DE//BC(cmt)

⇒ΔADE∼ΔABC(hệ quả của định lí ta lét)

\(\frac{DE}{BC}=\frac{AD}{AB}=\frac{AE}{AC}\)(các cạnh tương ứng của hai tam giác ADE và ABC)

hay \(\frac{DE}{12}=\frac{1}{3}\)

\(3\cdot DE=12\)

hay DE=4cm

Vậy: DE=4cm

3 tháng 3 2020

Cảm ơn bạn.