K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

-OM cắt DC tại N'.

\(\dfrac{AM}{DN}=\dfrac{MB}{NC}=\dfrac{AM+MB}{DN+BC}=\dfrac{AB}{DC}\)

-Xét △ODN' có: AM//DN'.

\(\Rightarrow\dfrac{AM}{DN'}=\dfrac{OM}{MN'}\) (hệ quả định lí Ta-let) (1)

-Xét △OCN' có: BM//CN'.

\(\Rightarrow\dfrac{BM}{CN'}=\dfrac{OM}{MN'}\) (định lí Ta-let) (2)

-Từ (1) và (2) suy ra: 

\(\dfrac{AM}{DN'}=\dfrac{BM}{CN'}=\dfrac{AM+BM}{CN'+DN'}=\dfrac{AB}{CD}\)

\(\Rightarrow\dfrac{AM}{CN'}=\dfrac{BM}{DN'}=\dfrac{AM}{CN}=\dfrac{BM}{DN}\)

\(\Rightarrow CN=CN';DN=DN'\)

\(\Rightarrow N\equiv N'\)

-Vậy MN đi qua điểm O.

12 tháng 2 2016

ai giúp mình với

1)Cho góc xAy khác góc bẹt. trên cạnh Ox lấy hai điểm B và D, trên cạnh Ay lấy hai điểm C và E sao cho \(\frac{AD}{BD}\)= \(\frac{11}{8}\)và AC= \(\frac{3}{8}\)CE. a) Chứng minh BC//DE b) Biết BC= 3cm. Tính DE 2) Cho hình thang ABCD (AB//CD) có AB= 14cm, CD= 35cm, AD= 17,5cm. trên cạnh AD lấy sđiểm E sao cho DE =5cm. Qua E vẽ đường thẳng song song với AB cắt BC ở F. Tính độ dài EF. 3) Cho hình thang ABCD. Một cát tuyến d song...
Đọc tiếp

1)Cho góc xAy khác góc bẹt. trên cạnh Ox lấy hai điểm B và D, trên cạnh Ay lấy hai điểm C và E sao cho \(\frac{AD}{BD}\)= \(\frac{11}{8}\)và AC= \(\frac{3}{8}\)CE.

a) Chứng minh BC//DE

b) Biết BC= 3cm. Tính DE

2) Cho hình thang ABCD (AB//CD) có AB= 14cm, CD= 35cm, AD= 17,5cm. trên cạnh AD lấy sđiểm E sao cho DE =5cm. Qua E vẽ đường thẳng song song với AB cắt BC ở F. Tính độ dài EF.

3) Cho hình thang ABCD. Một cát tuyến d song song với đáy DC cắt AD, BC lần lượt ở M,N. Chứng minh \(\frac{AM}{MD}\)=\(\frac{BN}{NC}\)

4) Cho hình thang ABCD có AB//CD. Gọi O là giao điểm hai đường chéoAC và BD và K là giao điểm của AD và BD. Kẻ đường thẳng KO cắt AB tại M, cắt CD tại N. CMR:

a) \(\frac{MA}{ND}\)=\(\frac{MB}{NC}\)

b) \(\frac{MA}{NC}\)=\(\frac{MB}{ND}\)

c) M là trung điểm của AB; N là trung điểm CD

1
19 tháng 1 2017

@Nguyễn Trần Thành Đạt giúp mình với

Nguyễn Quang DuyNguyễn Huy ThắngNguyễn Phương Trâm

ai giỏi toán giúp đi, mình học toán dở.

2 tháng 3 2020

B C A D O M N E F T U V

Kẻ MT // BD, T \(\in\)AD

Gọi giao điểm của MT và AC là U, giao điểm của NT và BD là V

Xét \(\Delta ABD\)có : MT // BD \(\Rightarrow\frac{AM}{AB}=\frac{AT}{AD}\)( Định lí Ta-lét )

Mà \(\frac{AM}{AB}=\frac{CN}{CD}\)( gt ) \(\Rightarrow\frac{AT}{AD}=\frac{CN}{CD}\)

Áp dụng định lí Ta-lét đảo trong \(\Delta ACD\)có \(\frac{CN}{CD}=\frac{AT}{AD}\)( cmt ) \(\Rightarrow\)NT // AC

Áp dụng định lí Ta-lét trong các tam giác :

+) \(\Delta AOB\)có MU // BO ( MT // BD; U\(\in\)MT; O \(\in\)BD ) \(\Rightarrow\frac{MU}{BO}=\frac{AM}{AB}\)(1)

+) \(\Delta OCD\)có VN // OC ( NT // AC; V \(\in\)NT; O \(\in\)AC ) \(\Rightarrow\frac{VN}{OC}=\frac{VD}{OD}\)(2)

+) \(\Delta OAD\)\(\orbr{\begin{cases}UT//OD\Rightarrow\frac{UT}{OD}=\frac{AT}{ÀD}\Rightarrow\frac{UT}{OD}=\frac{AM}{AB}\left(3\right)\\VT//OA\Rightarrow\frac{VT}{OA}=\frac{VD}{OD}\left(4\right)\end{cases}}\)

+) \(\Delta MNT\)\(\orbr{\begin{cases}EU//NT\left(AC//NT;E,U\in AC\right)\Rightarrow\frac{MU}{UT}=\frac{ME}{EN}\left(5\right)\\FV//MT\left(BD//MT;F,V\in BD\right)\Rightarrow\frac{VN}{VT}=\frac{FN}{FM}\left(6\right)\end{cases}}\)

Từ (1) (3) \(\Rightarrow\frac{MU}{OB}=\frac{UT}{OD}\Rightarrow\frac{MU}{UT}=\frac{OB}{OD}\)

Từ (2) (4) \(\Rightarrow\frac{VN}{OC}=\frac{VT}{OA}\Rightarrow\frac{VN}{VT}=\frac{OC}{OA}\)

Áp dụng hệ quả định lí Ta-lét trong \(\Delta OAD\)và \(\Delta OBC\)có BC // AD ( gt ) \(\Rightarrow\frac{OC}{OA}=\frac{OB}{OD}\)

\(\Rightarrow\frac{MU}{UT}=\frac{VN}{VT}\)kết hợp với điều (5) (6) \(\Rightarrow\frac{ME}{EN}=\frac{FN}{MF}\Rightarrow ME\cdot MF=FN\cdot EN\)

\(\Rightarrow ME\cdot\left(ME+EF\right)=FN\cdot\left(FN+EF\right)\Rightarrow ME^2+ME\cdot EF=FN^2+FN\cdot EF\)

\(\Rightarrow ME^2+ME\cdot EF-FN^2-FN\cdot EF=0\)\(\Rightarrow\left(ME-FN\right)\cdot\left(ME+FN\right)+EF\cdot\left(ME-FN\right)=0\)

\(\Rightarrow\left(ME-FN\right)\cdot\left(ME+FN+EF\right)=0\)

Vì các cạnh ME, FN, EF luôn lớn hơn 0 \(\Rightarrow\)không có trường hợp ME + FN + EF = 0

\(\Rightarrow ME-FN=0\Leftrightarrow ME=FN\)

28 tháng 2 2020

CÁI XANH XANH KIA LÀ GÌ VẬY???

16 tháng 1 2017

A B C D M N P Q O

Áp dụng hệ quả của định lí Ta-lét,ta có :

\(\Delta AMO\)có NC // AM\(\Rightarrow\frac{NC}{MA}=\frac{ON}{OM}\left(1\right)\)

\(\Delta MBO\)có ND // MB\(\Rightarrow\frac{ND}{MB}=\frac{ON}{OM}\left(2\right)\)

\(\Delta ADB\)có OP // AB\(\Rightarrow\frac{OP}{AB}=\frac{OD}{DB}\left(3\right)\)

\(\Delta ACB\)có OQ // AB\(\Rightarrow\frac{OQ}{AB}=\frac{OC}{AC}\left(4\right)\)

\(\Delta ODC\)có AB // CD\(\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\left(5\right)\)

Từ (1) và (2),ta có\(\frac{NC}{MA}=\frac{ND}{MB}\Rightarrow\frac{NC}{ND}=\frac{MA}{MB}=k\Rightarrow\frac{ND}{NC}=\frac{1}{k}\)

Từ (3),(4) và (5),ta có\(\frac{OP}{AB}=\frac{OQ}{AB}\)=> OP = OQ => O là trung điểm PQ

17 tháng 1 2017

thông cảm định lí Ta-let mình chưa học tới