Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: AMBˆ+BMCˆ+DMCˆ=180o⇒AMBˆ+DMCˆ=900AMB^+BMC^+DMC^=180o⇒AMB^+DMC^=900
đồng thời: AMBˆ+ABMˆ=900AMB^+ABM^=900
⇒DMCˆ=ABMˆ⇒DMC^=ABM^
xét tam giác ABM và tam giác DMC có:
MABˆ=MDCˆ=900ABMˆ=DMCˆMAB^=MDC^=900ABM^=DMC^
do đó tam giác ABM đồng dạng tam giác DMC(g-g)
⇒ABAM=MDDC⇒AB.DC=AM.MD⇒ABAM=MDDC⇒AB.DC=AM.MD
mà AM=MD, nên : AB.DC=AM.AMAB.DC=AM.AM
b) vì tam giác ABM đồng dạng tam giác DMC nên:
BMMC=ABMDhayBMMC=ABAMBMMC=ABMDhayBMMC=ABAM
đồng thời: MABˆ=MDCˆ=900MAB^=MDC^=900
do đó tam giác ABM đồng dạng tam giác MBC(c-g-c)
a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)
\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)
\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)
b, \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)
Do đó: BI là tia p/g của \(\widehat{ABC}\)
Mà CI là tia phân giác của \(\widehat{BCD}\)
\(\widehat{ABC}+\widehat{BCD}=180^0\)
\(\Rightarrow\widehat{BIC}=90^0\)
c, \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)
\(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\) (2)
Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)
A B H D C 1 2
a,kẻ \(AH\bot DC(H\in BC)\)
cm được ABHD là hình chữ nhật suy ra AB=HD=2cm
Mà DH+HC=DC
\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\)
\(\Rightarrow \Delta DBC\) cân tại B
\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)
\(\Rightarrow\Delta DBC \) vuông cân tại B
b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)
\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D
c,Ta tính được BH=DH=CH=2cm
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)