K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)

\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)

\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)

b,  \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)

Do đó: BI là tia p/g của \(\widehat{ABC}\)

Mà      CI là tia phân giác của \(\widehat{BCD}\)

          \(\widehat{ABC}+\widehat{BCD}=180^0\)

\(\Rightarrow\widehat{BIC}=90^0\)

c,  \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)

     \(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\)  (2)

Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)

           

28 tháng 10 2017

ae trả lời hộ mình cái

28 tháng 10 2017

vẽ hình đi làm cho

15 tháng 10 2016

Ta có: B đối xứng với H qua AD
=> AH = AB và HB vuông góc với AD

Xét tam giác AIB và tam giác AIH, có:
* AH = AB (cmt)
* góc HAI = góc BAI (=90 độ )
* IA là cạnh chung
=> tam giác AIB = tam giác AIH (c.g.c)
=> góc AIB = góc AIH (yếu tố tương ứng)
Mà góc AIH = góc DIC (đối đỉnh)
=> góc AIB = goác DIC (đpcm)